import matplotlib.pyplot as plt import numpy as np import pandas as pd import os import sys import glob from IPython import embed def load_frame_times(trial_path): t_filepath = glob.glob(os.path.join(trial_path, '*.dat')) if len(t_filepath) == 0: return np.array([]) else: t_filepath = t_filepath[0] f = open(t_filepath, 'r') frame_t = [] for line in f.readlines(): t = sum(x * float(t) for x, t in zip([3600, 60, 1], line.replace('\n', '').split(":"))) frame_t.append(t) return np.array(frame_t) def load_and_converete_boris_events(trial_path, recording, sr, video_stated_FPS=25): def converte_video_frames_to_grid_idx(event_frames, led_frames, led_idx): event_idx_grid = (event_frames - led_frames[0]) / (led_frames[-1] - led_frames[0]) * (led_idx[-1] - led_idx[0]) + led_idx[0] return event_idx_grid # idx in grid-recording led_idx = pd.read_csv(os.path.join(trial_path, 'led_idxs.csv'), header=None).iloc[:, 0].to_numpy() # frames where LED gets switched on led_frames = np.load(os.path.join(trial_path, 'LED_frames.npy')) times, behavior, t_ag_on_off, t_contact = load_boris(trial_path, recording) contact_frame = np.array(np.round(t_contact * video_stated_FPS), dtype=int) ag_on_off_frame = np.array(np.round(t_ag_on_off * video_stated_FPS), dtype=int) # led_t_GRID = led_idx / sr contact_t_GRID = converte_video_frames_to_grid_idx(contact_frame, led_frames, led_idx) / sr ag_on_off_t_GRID = converte_video_frames_to_grid_idx(ag_on_off_frame, led_frames, led_idx) / sr return contact_t_GRID, ag_on_off_t_GRID, led_idx, led_frames def load_boris(trial_path, recording): boris_file = '-'.join(recording.split('-')[:3]) + '.csv' data = pd.read_csv(os.path.join(trial_path, boris_file)) times = data['Start (s)'] behavior = data['Behavior'] t_ag_on = times[behavior == 0] t_ag_off = times[behavior == 1] t_ag_on_off = [] for t in t_ag_on: t1 = np.array(t_ag_off)[t_ag_off > t] if len(t1) >= 1: t_ag_on_off.append(np.array([t, t1[0]])) t_contact = times[behavior == 2] return times, behavior, np.array(t_ag_on_off), t_contact.to_numpy() def main(data_folder=None): trials_meta = pd.read_csv('order_meta.csv') video_stated_FPS = 25. # cap.get(cv2.CAP_PROP_FPS) sr = 20_000 for trial_idx in range(len(trials_meta)): group = trials_meta['group'][trial_idx] recording = trials_meta['recording'][trial_idx][1:-1] rec_id1 = trials_meta['rec_id1'][trial_idx] rec_id2 = trials_meta['rec_id2'][trial_idx] if group < 3: continue trial_path = os.path.join(data_folder, recording) if not os.path.exists(trial_path): continue if not os.path.exists(os.path.join(trial_path, 'led_idxs.csv')): continue if not os.path.exists(os.path.join(trial_path, 'LED_frames.npy')): continue contact_t_GRID, ag_on_off_t_GRID, led_idx, led_frames = \ load_and_converete_boris_events(trial_path, recording, sr) fund_v = np.load(os.path.join(trial_path, 'fund_v.npy')) ident_v = np.load(os.path.join(trial_path, 'ident_v.npy')) idx_v = np.load(os.path.join(trial_path, 'idx_v.npy')) times = np.load(os.path.join(trial_path, 'times.npy')) if len(uid:=np.unique(ident_v[~np.isnan(ident_v)])) >2: print(f'to many ids: {len(uid)}') print(f'ids in recording: {uid[0]:.0f} {uid[1]:.0f}') print(f'ids in meta: {rec_id1:.0f} {rec_id2:.0f}') fig, ax = plt.subplots(figsize=(30/2.54, 18/2.54)) for id in uid: ax.plot(times[idx_v[ident_v == id]] / 3600, fund_v[ident_v == id], marker='.') ax.plot(contact_t_GRID / 3600, np.ones_like(contact_t_GRID) * 1050, '|', markersize=20, color='k') ax.plot(ag_on_off_t_GRID[:, 0] / 3600, np.ones_like(ag_on_off_t_GRID[:, 0]) * 1150, '|', markersize=20, color='red') ax.set_ylim(400, 1200) plt.show() embed() quit() pass if __name__ == '__main__': # main("/home/raab/data/mount_data/") main("/home/raab/data/2020_competition_mount")