import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import numpy as np import pandas as pd import os import sys import glob from IPython import embed def load_frame_times(trial_path): t_filepath = glob.glob(os.path.join(trial_path, '*.dat')) if len(t_filepath) == 0: return np.array([]) else: t_filepath = t_filepath[0] f = open(t_filepath, 'r') frame_t = [] for line in f.readlines(): t = sum(x * float(t) for x, t in zip([3600, 60, 1], line.replace('\n', '').split(":"))) frame_t.append(t) return np.array(frame_t) def load_and_converete_boris_events(trial_path, recording, sr, video_stated_FPS=25): def converte_video_frames_to_grid_idx(event_frames, led_frames, led_idx): event_idx_grid = (event_frames - led_frames[0]) / (led_frames[-1] - led_frames[0]) * (led_idx[-1] - led_idx[0]) + led_idx[0] return event_idx_grid # idx in grid-recording led_idx = pd.read_csv(os.path.join(trial_path, 'led_idxs.csv'), header=None).iloc[:, 0].to_numpy() # frames where LED gets switched on led_frames = np.load(os.path.join(trial_path, 'LED_frames.npy')) times, behavior, t_ag_on_off, t_contact, video_FPS = load_boris(trial_path, recording) contact_frame = np.array(np.round(t_contact * video_FPS), dtype=int) ag_on_off_frame = np.array(np.round(t_ag_on_off * video_FPS), dtype=int) # led_t_GRID = led_idx / sr contact_t_GRID = converte_video_frames_to_grid_idx(contact_frame, led_frames, led_idx) / sr ag_on_off_t_GRID = converte_video_frames_to_grid_idx(ag_on_off_frame, led_frames, led_idx) / sr return contact_t_GRID, ag_on_off_t_GRID, led_idx, led_frames def load_boris(trial_path, recording): boris_file = '-'.join(recording.split('-')[:3]) + '.csv' data = pd.read_csv(os.path.join(trial_path, boris_file)) times = data['Start (s)'] behavior = data['Behavior'] t_ag_on = times[behavior == 0] t_ag_off = times[behavior == 1] t_ag_on_off = [] for t in t_ag_on: t1 = np.array(t_ag_off)[t_ag_off > t] if len(t1) >= 1: t_ag_on_off.append(np.array([t, t1[0]])) t_contact = times[behavior == 2] return times, behavior, np.array(t_ag_on_off), t_contact.to_numpy(), data['FPS'][0] def get_baseline_freq(fund_v, idx_v, times, ident_v, idents = None, binwidth = 300): if not hasattr(idents, '__len__'): idents = np.unique(ident_v[~np.isnan(ident_v)]) base_freqs = [] for id in idents: f = fund_v[ident_v == id] t = times[idx_v[ident_v == id]] bins = np.arange(-binwidth/2, times[-1] + binwidth/2, binwidth) base_f = np.full(len(bins)-1, np.nan) for i in range(len(bins)-1): Cf = f[(t > bins[i]) & (t <= bins[i+1])] if len(Cf) == 0: continue else: base_f[i] = np.percentile(Cf, 5) base_freqs.append(base_f) return np.array(base_freqs), np.array(bins[:-1] + (bins[1] - bins[0])/2) def frequency_q10_compensation(baseline_freq, temp, temp_t, light_start_sec): q10_comp_freq = [] q10_vals = [] for bf in baseline_freq: Cbf = np.copy(bf) Ctemp = np.copy(temp) if len(Cbf) > len(Ctemp): Cbf = Cbf[:len(Ctemp)] elif len(Ctemp) > len(Cbf): Ctemp = Ctemp[:len(Cbf)] else: pass q10s = [] for i in range(len(Cbf) - 1): for j in np.arange(len(Cbf) - 1) + 1: if Cbf[i] == Cbf[j] or Ctemp[i] == Ctemp[j]: # q10 with same values is useless continue if temp_t[i] < light_start_sec or temp_t[j] < light_start_sec: # to much frequency changes due to rises in first part of rec !!! continue Cq10 = q10(Cbf[i], Cbf[j], Ctemp[i], Ctemp[j]) q10s.append(Cq10) q10_comp_freq.append(Cbf * np.median(q10s) ** ((25 - Ctemp) / 10)) q10_vals.append(np.median(q10s)) return q10_comp_freq, q10_vals def get_temperature(folder_path): temp_file = pd.read_csv(os.path.join(folder_path, 'temperatures.csv'), sep=';') temp_t = temp_file[temp_file.keys()[0]] temp = temp_file[temp_file.keys()[1]] temp_t = np.array(temp_t) temp = np.array(temp) if type(temp[-1]).__name__== 'str': temp = np.array(temp[:-1], dtype=float) temp_t = np.array(temp_t[:-1], dtype=int) return np.array(temp_t), np.array(temp) def main(data_folder=None): colors = ['#BA2D22', '#53379B', '#F47F17', '#3673A4', '#AAB71B', '#DC143C', '#1E90FF'] female_color, male_color = '#e74c3c', '#3498db' Wc, Lc = 'darkgreen', '#3673A4' trials_meta = pd.read_csv('order_meta.csv') fish_meta = pd.read_csv('id_meta.csv') fish_meta['mean_w'] = np.nanmean(fish_meta.loc[:, ['w1', 'w2', 'w3']], axis=1) fish_meta['mean_l'] = np.nanmean(fish_meta.loc[:, ['l1', 'l2', 'l3']], axis=1) video_stated_FPS = 25 # cap.get(cv2.CAP_PROP_FPS) sr = 20_000 trial_summary = pd.DataFrame(columns=['sex_win', 'sex_lose', 'size_win', 'size_lose', 'EODf_win', 'EODf_lose', 'exp_win', 'exp_lose', 'chirps_win', 'chirps_lose', 'rises_win', 'rise_lose']) trial_summary_row = {f'{s}':None for s in trial_summary.keys()} for trial_idx in range(len(trials_meta)): group = trials_meta['group'][trial_idx] recording = trials_meta['recording'][trial_idx][1:-1] rec_id1 = trials_meta['rec_id1'][trial_idx] rec_id2 = trials_meta['rec_id2'][trial_idx] if group < 3: continue trial_path = os.path.join(data_folder, recording) if not os.path.exists(trial_path): continue if not os.path.exists(os.path.join(trial_path, 'led_idxs.csv')): continue if not os.path.exists(os.path.join(trial_path, 'LED_frames.npy')): continue ############################################################################################################# ### meta collect win_id = rec_id1 if trials_meta['fish1'][trial_idx] == trials_meta['winner'][trial_idx] else rec_id2 lose_id = rec_id2 if trials_meta['fish1'][trial_idx] == trials_meta['winner'][trial_idx] else rec_id1 f1_length = float(fish_meta['mean_l'][(fish_meta['group'] == trials_meta['group'][trial_idx]) & (fish_meta['fish'] == trials_meta['fish1'][trial_idx])]) f2_length = float(fish_meta['mean_l'][(fish_meta['group'] == trials_meta['group'][trial_idx]) & (fish_meta['fish'] == trials_meta['fish2'][trial_idx])]) win_l = f1_length if trials_meta['fish1'][trial_idx] == trials_meta['winner'][trial_idx] else f2_length lose_l = f2_length if trials_meta['fish1'][trial_idx] == trials_meta['winner'][trial_idx] else f1_length win_exp = trials_meta['exp1'][trial_idx] if trials_meta['winner'][trial_idx] == trials_meta['fish1'][trial_idx] else trials_meta['exp2'][trial_idx] lose_exp = trials_meta['exp2'][trial_idx] if trials_meta['winner'][trial_idx] == trials_meta['fish1'][trial_idx] else trials_meta['exp1'][trial_idx] ############################################################################################################# fund_v = np.load(os.path.join(trial_path, 'fund_v.npy')) ident_v = np.load(os.path.join(trial_path, 'ident_v.npy')) idx_v = np.load(os.path.join(trial_path, 'idx_v.npy')) times = np.load(os.path.join(trial_path, 'times.npy')) print('') if len(uid:=np.unique(ident_v[~np.isnan(ident_v)])) >2: print(f'to many ids: {len(uid)}') print(f'ids in recording: {uid[0]:.0f} {uid[1]:.0f}') print(f'ids in meta: {rec_id1:.0f} {rec_id2:.0f}') meta_id_in_uid = list(map(lambda x: x in uid, [rec_id1, rec_id2])) if ~np.all(meta_id_in_uid): continue temp_t, temp = get_temperature(trial_path) ############################################################################################################# ### communication got_chirps = False if os.path.exists(os.path.join(trial_path, 'chirp_times_cnn.npy')): chirp_t = np.load(os.path.join(trial_path, 'chirp_times_cnn.npy')) chirp_ids = np.load(os.path.join(trial_path, 'chirp_ids_cnn.npy')) got_chirps = True chirp_times = [chirp_t[chirp_ids == win_id], chirp_t[chirp_ids == lose_id]] rise_idx = np.load(os.path.join(trial_path, 'analysis', 'rise_idx.npy')) rise_idx_int = [np.array(rise_idx[i][~np.isnan(rise_idx[i])], dtype=int) for i in range(len(rise_idx))] ############################################################################################################# ### physical behavior contact_t_GRID, ag_on_off_t_GRID, led_idx, led_frames = \ load_and_converete_boris_events(trial_path, recording, sr, video_stated_FPS=video_stated_FPS) trial_summary.loc[len(trial_summary)] = trial_summary_row trial_summary.iloc[-1] = {'sex_win': 'n', 'sex_lose': 'n', 'size_win': win_l, 'size_lose': lose_l, 'EODf_win': -1, 'EODf_lose': -1, 'exp_win': win_exp, 'exp_lose': lose_exp, 'chirps_win': len(chirp_times[0]), 'chirps_lose': len(chirp_times[1]), 'rises_win': len(rise_idx_int[0]), 'rise_lose': len(rise_idx_int[1]) } # embed() ############################################################################### fig = plt.figure(figsize=(30/2.54, 18/2.54)) gs = gridspec.GridSpec(2, 1, left = 0.1, bottom = 0.1, right=0.95, top=0.95, height_ratios=[1, 3], hspace=0) ax = [] ax.append(fig.add_subplot(gs[0, 0])) ax.append(fig.add_subplot(gs[1, 0], sharex=ax[0])) ax[1].plot(times[idx_v[ident_v == win_id]] / 3600, fund_v[ident_v == win_id], color=Wc) ax[1].plot(times[idx_v[ident_v == lose_id]] / 3600, fund_v[ident_v == lose_id], color=Lc) ax[0].plot(contact_t_GRID / 3600, np.ones_like(contact_t_GRID) , '|', markersize=10, color='k') ax[0].plot(ag_on_off_t_GRID[:, 0] / 3600, np.ones_like(ag_on_off_t_GRID[:, 0]) * 2, '|', markersize=10, color='firebrick') ax[0].plot(times[rise_idx_int[0]] / 3600, np.ones_like(rise_idx_int[0]) * 4, '|', markersize=10, color=Wc) ax[0].plot(times[rise_idx_int[1]] / 3600, np.ones_like(rise_idx_int[1]) * 5, '|', markersize=10, color=Lc) if got_chirps: ax[0].plot(chirp_times[0] / 3600, np.ones_like(chirp_times[0]) * 7, '|', markersize=10, color=Wc) ax[0].plot(chirp_times[1] / 3600, np.ones_like(chirp_times[1]) * 8, '|', markersize=10, color=Lc) min_f, max_f = np.min(fund_v[~np.isnan(ident_v)]), np.nanmax(fund_v[~np.isnan(ident_v)]) ax[0].set_ylim(0, 9) ax[0].set_yticks([1, 2, 4, 5, 7, 8]) ax[0].set_yticklabels(['contact', 'chase', r'rise$_{win}$', r'rise$_{lose}$', r'chirp$_{win}$', r'chirp$_{lose}$']) ax[1].set_ylim(min_f-50, max_f+50) ax[1].set_xlim(times[0]/3600, times[-1]/3600) plt.setp(ax[0].get_xticklabels(), visible=False) fig.suptitle(f'{recording}') plt.show() fig = plt.figure(figsize=(20/2.54, 20/2.54)) gs = gridspec.GridSpec(2, 2, left=0.1, bottom=0.1, right=0.95, top=0.95, height_ratios=[1, 3], width_ratios=[3, 1]) ax = fig.add_subplot(gs[1, 0]) ax.plot(trial_summary['rises_win'], trial_summary['chirps_win'], 'o', color=Wc, label='winner') ax.plot(trial_summary['rise_lose'], trial_summary['chirps_lose'], 'o', color=Lc, label='loster') ax.set_xlabel('rises [n]', fontsize=12) ax.set_ylabel('chirps [n]', fontsize=12) ax.tick_params(labelsize=10) ax_chirps = fig.add_subplot(gs[1, 1], sharey=ax) ax_chirps.boxplot([trial_summary['chirps_win'], trial_summary['chirps_lose']], widths = .5, positions = [1, 2]) ax_chirps.set_xticks([1, 2]) ax_chirps.set_xticklabels(['Win', 'Lose']) plt.setp(ax_chirps.get_yticklabels(), visible=False) ax_rises = fig.add_subplot(gs[0, 0], sharex=ax) ax_rises.boxplot([trial_summary['rises_win'], trial_summary['rise_lose']], widths = .5, positions = [1, 2], vert=False) ax_rises.set_yticks([1, 2]) ax_rises.set_yticklabels(['Win', 'Lose']) plt.setp(ax_rises.get_xticklabels(), visible=False) plt.show() embed() quit() pass if __name__ == '__main__': # main("/home/raab/data/mount_data/") main("/home/raab/data/2020_competition_mount")