import os import sys import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from matplotlib.patches import Patch import pandas as pd from IPython import embed from event_time_correlations import load_and_converete_boris_events, kde, gauss female_color, male_color = '#e74c3c', '#3498db' def iei_analysis(all_chirp_times_lose, all_chirp_times_win, all_rise_times_lose, all_rise_times_win, win_sex, lose_sex): ici_lose = [] ici_win = [] iri_lose = [] iri_win = [] for i in range(len(all_chirp_times_lose)): ici_lose.append(np.diff(all_chirp_times_lose[i])) ici_win.append(np.diff(all_chirp_times_win[i])) iri_lose.append(np.diff(all_rise_times_lose[i])) iri_win.append(np.diff(all_rise_times_win[i])) for iei, kernal_w in zip([ici_lose, ici_win, iri_lose, iri_win], [1, 1, 5, 50]): fig = plt.figure(figsize=(20 / 2.54, 12 / 2.54)) gs = gridspec.GridSpec(2, 2, left=0.1, bottom=0.1, right=0.95, top=0.95) ax = [] ax.append(fig.add_subplot(gs[0, 0])) ax.append(fig.add_subplot(gs[0, 1], sharey=ax[0], sharex=ax[0])) ax.append(fig.add_subplot(gs[1, 0], sharey=ax[0], sharex=ax[0])) ax.append(fig.add_subplot(gs[1, 1], sharey=ax[0], sharex=ax[0])) for i in range(len(iei)): if win_sex[i] == 'm': if lose_sex[i] == 'm': color, linestyle = male_color, '-' sp = 0 else: color, linestyle = male_color, '--' sp = 1 else: if lose_sex[i] == 'm': color, linestyle = female_color, '--' sp = 2 else: color, linestyle = female_color, '-' sp = 3 conv_y_chirp_lose = np.arange(0, np.percentile(np.hstack(iei), 90), .5) kde_array = kde(iei[i], conv_y_chirp_lose, kernal_w=kernal_w, kernal_h=1) # kde_array /= np.sum(kde_array) ax[sp].plot(conv_y_chirp_lose, kde_array, zorder=2, color=color, linestyle=linestyle, lw=2) plt.setp(ax[1].get_yticklabels(), visible=False) plt.setp(ax[3].get_yticklabels(), visible=False) plt.setp(ax[0].get_xticklabels(), visible=False) plt.setp(ax[1].get_xticklabels(), visible=False) plt.show() def relative_rate_progression(all_event_t, title=''): stop_t = 3*60*60 snippet_len = 15*60 snippet_starts = np.arange(0, stop_t, snippet_len) all_snippet_ratio = [] for event_t in all_event_t: if len(event_t) == 0: continue expected_snippet_count = len(event_t[event_t <= stop_t]) / (stop_t / snippet_len) snippet_ratio = [] for s0 in snippet_starts: snippet_count = len(event_t[(event_t >= s0) & (event_t < s0 + snippet_len)]) snippet_ratio.append(snippet_count/expected_snippet_count) all_snippet_ratio.append(snippet_ratio) all_snippet_ratio = np.array(all_snippet_ratio) fig = plt.figure(figsize=(20/2.54, 12/2.54)) gs = gridspec.GridSpec(1, 1, left=.1, bottom=.1, right=0.95, top=0.95) ax = fig.add_subplot(gs[0, 0]) plot_t = np.repeat(snippet_starts, 2) plot_t[1::2] += snippet_len for event_ratios in all_snippet_ratio: plot_ratios = np.repeat(event_ratios, 2) ax.plot(plot_t / 3600, plot_ratios, color='grey', lw=1, alpha=0.5) # ax.plot(snippet_starts + snippet_len/2, event_ratios) mean_ratio = np.median(all_snippet_ratio, axis=0) plot_mean_ratio = np.repeat(mean_ratio, 2) ax.plot(plot_t / 3600, plot_mean_ratio, color='k', lw=3) ax.plot(plot_t / 3600, np.ones_like(plot_t), linestyle='dotted', lw=2, color='k') ax.set_xlabel('time [h]', fontsize=12) ax.set_ylabel('norm. event rate', fontsize=12) ax.set_title(title) ax.tick_params(labelsize=10) ax.set_xlim(0, 3) ax.set_ylim(0, 5) plt.show() def main(base_path): trial_summary = pd.read_csv('trial_summary.csv', index_col=0) all_rise_times_lose = [] all_rise_times_win = [] all_chirp_times_lose = [] all_chirp_times_win = [] win_sex = [] lose_sex = [] all_contact_t = [] all_ag_on_t = [] all_ag_off_t = [] for index, trial in trial_summary.iterrows(): print(index, len(trial_summary)) got_boris = False trial_path = os.path.join(base_path, trial['recording']) if trial['group'] < 3: continue if trial['draw'] == 1: continue if os.path.exists(os.path.join(trial_path, 'led_idxs.csv')): got_boris = True if os.path.exists(os.path.join(trial_path, 'LED_frames.npy')): got_boris = True ids = np.load(os.path.join(trial_path, 'analysis', 'ids.npy')) times = np.load(os.path.join(trial_path, 'times.npy')) sorter = -1 if trial['win_ID'] != ids[0] else 1 ### event times --> BORIS behavior if got_boris: contact_t_GRID, ag_on_off_t_GRID, led_idx, led_frames = \ load_and_converete_boris_events(trial_path, trial['recording'], sr=20_000) all_contact_t.append(contact_t_GRID) all_ag_on_t.append(ag_on_off_t_GRID[:, 0]) all_ag_off_t.append(ag_on_off_t_GRID[:, 1]) else: all_contact_t.append(np.array([])) all_ag_on_t.append(np.array([])) all_ag_off_t.append(np.array([])) ### communication if not os.path.exists(os.path.join(trial_path, 'chirp_times_cnn.npy')): continue chirp_t = np.load(os.path.join(trial_path, 'chirp_times_cnn.npy')) chirp_ids = np.load(os.path.join(trial_path, 'chirp_ids_cnn.npy')) chirp_times = [chirp_t[chirp_ids == trial['win_ID']], chirp_t[chirp_ids == trial['lose_ID']]] rise_idx = np.load(os.path.join(trial_path, 'analysis', 'rise_idx.npy'))[::sorter] rise_idx_int = [np.array(rise_idx[i][~np.isnan(rise_idx[i])], dtype=int) for i in range(len(rise_idx))] rise_times = [times[rise_idx_int[0]], times[rise_idx_int[1]]] # iri = np.diff(rise_times[1]) all_rise_times_lose.append(rise_times[1]) all_rise_times_win.append(rise_times[0]) all_chirp_times_lose.append(chirp_times[1]) all_chirp_times_win.append(chirp_times[0]) win_sex.append(trial['sex_win']) lose_sex.append(trial['sex_lose']) embed() quit() iei_analysis(all_chirp_times_lose, all_chirp_times_win, all_rise_times_lose, all_rise_times_win, win_sex, lose_sex) relative_rate_progression(all_chirp_times_lose, title=r'chirp$_{lose}$') relative_rate_progression(all_chirp_times_win, title=r'chirp$_{win}$') relative_rate_progression(all_rise_times_lose, title=r'rise$_{lose}$') relative_rate_progression(all_rise_times_win, title=r'rise$_{win}$') relative_rate_progression(all_contact_t, title=r'contact') relative_rate_progression(all_ag_on_t, title=r'chasing') all_chase_chirp_mask = [] all_chasing_t = [] all_chase_off_chirp_mask = [] all_chase_off_t = [] all_contact_chirp_mask = [] all_physical_t = [] time_tol = 2 for contact_t, ag_on_t, ag_off_t, chirp_times_lose in zip(all_contact_t, all_ag_on_t, all_ag_off_t, all_chirp_times_lose): if len(contact_t) == 0: continue # ToDo: the 5 seconds are a little dirty... sometimes 5s is longer than chasing dur chase_chirp_mask = np.zeros_like(chirp_times_lose) chase_off_chirp_mask = np.zeros_like(chirp_times_lose) for chase_on_t, chase_off_t in zip(ag_on_t, ag_off_t): chase_chirp_mask[(chirp_times_lose >= chase_on_t) & (chirp_times_lose < chase_off_t-time_tol)] = 1 chase_off_chirp_mask[(chirp_times_lose >= chase_off_t-time_tol) & (chirp_times_lose < chase_off_t+time_tol)] = 1 all_chase_chirp_mask.append(chase_chirp_mask) all_chase_off_chirp_mask.append(chase_off_chirp_mask) chasing_dur = (ag_off_t - ag_on_t) - time_tol chasing_dur[chasing_dur < 0] = 0 chasing_t = np.sum(chasing_dur) all_chasing_t.append(chasing_t) all_chase_off_t.append(len(ag_off_t) * time_tol*2) contact_chirp_mask = np.zeros_like(chirp_times_lose) for ct in contact_t: contact_chirp_mask[(chirp_times_lose >= ct-time_tol) & (chirp_times_lose < ct+time_tol)] = 1 all_contact_chirp_mask.append(contact_chirp_mask) all_physical_t.append(len(contact_t) * time_tol*2) all_physical_t = np.array(all_physical_t) all_chasing_t = np.array(all_chasing_t) all_chase_off_t = np.array(all_chase_off_t) physical_t_ratio = all_physical_t / (3*60*60) chase_t_ratio = all_chasing_t / (3*60*60) chase_off_t_ratio = all_chase_off_t / (3*60*60) contact_chirp_ratio = np.array(list(map(lambda x: np.sum(x)/len(x), all_contact_chirp_mask))) chase_chirp_ratio = np.array(list(map(lambda x: np.sum(x)/len(x), all_chase_chirp_mask))) chase_off_chirp_ratio = np.array(list(map(lambda x: np.sum(x)/len(x), all_chase_off_chirp_mask))) fig = plt.figure(figsize=(20/2.54, 12/2.54)) gs = gridspec.GridSpec(1, 1, left=0.1, bottom=0.1, right=0.95, top=0.95) ax = fig.add_subplot(gs[0, 0]) ax.boxplot([chase_chirp_ratio/chase_t_ratio, contact_chirp_ratio/physical_t_ratio, chase_off_chirp_ratio/chase_off_t_ratio], positions=np.arange(3), sym='') ax.plot(np.arange(5)-1, np.ones(5), linestyle='dotted', lw=2, color='k') ax.set_xlim(-0.5, 2.5) ax.set_ylabel(r'rel. chrips$_{event}$ / rel. time$_{event}$', fontsize=12) ax.set_xticks(np.arange(3)) ax.set_xticklabels(['chasing', 'contact', r'chase$_{off}$']) ax.tick_params(labelsize=10) plt.show() flat_contact_chirp_mask = np.hstack(all_contact_chirp_mask) flat_chase_chirp_mask = np.hstack(all_chase_chirp_mask) flat_chase_off_chirp_mask = np.hstack(all_chase_off_chirp_mask) flat_chase_chirp_mask[flat_contact_chirp_mask == 1] = 0 flat_chase_off_chirp_mask[flat_contact_chirp_mask == 1] = 0 flat_chase_chirp_mask[flat_chase_off_chirp_mask == 1] = 0 chirps_context_values = [np.sum(flat_contact_chirp_mask) / len(flat_contact_chirp_mask), np.sum(flat_chase_chirp_mask) / len(flat_chase_chirp_mask), np.sum(flat_chase_off_chirp_mask) / len(flat_chase_off_chirp_mask)] chirps_context_values.append(1 - np.sum(chirps_context_values)) time_context_values = [np.sum(all_physical_t), np.sum(all_chasing_t), np.sum(all_chase_off_t)] time_context_values.append(len(all_chasing_t) * 3*60*60 - np.sum(time_context_values)) time_context_values /= np.sum(time_context_values) fig, ax = plt.subplots(figsize=(12/2.54,12/2.54)) size = 0.3 outer_colors = ['tab:red', 'tab:orange', 'tab:green', 'tab:grey'] ax.pie(chirps_context_values, radius=1, colors=outer_colors, wedgeprops=dict(width=size, edgecolor='w'), startangle=90, center=(0, .5)) ax.pie(time_context_values, radius=1-size, colors=outer_colors, wedgeprops=dict(width=size, edgecolor='w', alpha=.6), startangle=90, center=(0, .5)) ax.set_title(r'chirp$_{lose}$ context') legend_elements = [Patch(facecolor='tab:red', edgecolor='w', label='%.1f' % (chirps_context_values[0] * 100) + '%'), Patch(facecolor='tab:orange', edgecolor='w', label='%.1f' % (chirps_context_values[1] * 100) + '%'), Patch(facecolor='tab:green', edgecolor='w', label='%.1f' % (chirps_context_values[2] * 100) + '%'), Patch(facecolor='tab:red', alpha=0.6, edgecolor='w', label='%.1f' % (time_context_values[0] * 100) + '%'), Patch(facecolor='tab:orange', alpha=0.6, edgecolor='w', label='%.1f' % (time_context_values[1] * 100) + '%'), Patch(facecolor='tab:green', alpha=0.6, edgecolor='w', label='%.1f' % (time_context_values[2] * 100) + '%')] # ax.text(-0.65, -1.4, 'chirps', fontsize=10, va='center', ha='center') # ax.text(0.75, -1.4, 'time', fontsize=10, va='center', ha='center') ax.legend(handles=legend_elements, loc='lower right', ncol=2, bbox_to_anchor=(1.1, -0.15), frameon=False, fontsize=9) plt.show() embed() quit() # embed() # quit() pass if __name__ == '__main__': main(sys.argv[1])