fix Nvidia shit and compute event time correlations that have been added. event time analysis now include analysis on chirpt times/quantity during or relative to chasings. this about this again.

This commit is contained in:
Till Raab 2023-06-23 14:21:28 +02:00
parent fa6ed5b3b3
commit ea9d5f22f8
2 changed files with 366 additions and 222 deletions

View File

@ -182,7 +182,301 @@ def relative_rate_progression(all_event_t, title=''):
print(f'Progression {title}: pearson-r={r:.2f} p={p:.3f}')
def chase_time_progression(all_ag_on_t, all_ag_off_t):
stop_t = 3*60*60
snippet_len = 15*60
snippet_starts = np.arange(0, stop_t, snippet_len)
all_snippet_chase_dur = []
for a_on, a_off in zip(all_ag_on_t, all_ag_off_t):
if len(a_on) == 0:
continue
mean_chase_dur = np.mean(a_off - a_on)
snippet_chase_dur = []
for s0 in snippet_starts:
snippet_mask = (a_on > s0) & (a_on <= s0+snippet_len)
if np.any(snippet_mask):
snippet_chase_dur.append(np.mean(a_off[snippet_mask] - a_on[snippet_mask]))
else:
snippet_chase_dur.append(np.nan)
all_snippet_chase_dur.append(np.array(snippet_chase_dur) / mean_chase_dur)
all_snippet_chase_dur = np.array(all_snippet_chase_dur)
fig = plt.figure(figsize=(20/2.54, 12/2.54))
gs = gridspec.GridSpec(1, 1, left=.1, bottom=.1, right=0.95, top=0.95)
ax = fig.add_subplot(gs[0, 0])
plot_t = np.repeat(snippet_starts, 2)
plot_t[1::2] += snippet_len
for trial_snippet_chase_dur in all_snippet_chase_dur:
plot_ratios = np.repeat(trial_snippet_chase_dur, 2)
ax.plot(plot_t / 3600, plot_ratios, color='grey', lw=1, alpha=0.5)
# ax.plot(snippet_starts + snippet_len/2, event_ratios)
mean_ratio = np.nanmean(all_snippet_chase_dur, axis=0)
plot_mean_ratio = np.repeat(mean_ratio, 2)
ax.plot(plot_t / 3600, plot_mean_ratio, color='k', lw=3)
ax.plot(plot_t / 3600, np.ones_like(plot_t), linestyle='dotted', lw=2, color='k')
ax.set_xlabel('time [h]', fontsize=12)
ax.set_ylabel('chase duration / mean(chase duration)', fontsize=12)
ax.set_title('progression chase duration ')
ax.tick_params(labelsize=10)
ax.set_xlim(0, 3)
ax.set_ylim(0, 5)
x = np.hstack(all_snippet_chase_dur)
y = np.hstack(np.tile(snippet_starts, (all_snippet_chase_dur.shape[0], 1)))
r, p = scp.pearsonr(x[~np.isnan(x)], y[~np.isnan(x)])
print(f'Progression chase duration: pearson-r={r:.2f} p={p:.3f}')
plt.savefig(os.path.join(os.path.split(__file__)[0], 'figures', 'event_meta', 'chase_duration_progression.png'), dpi=300)
plt.close()
def event_category_signal(all_event_t, all_contact_t, all_ag_on_t, all_ag_off_t, win_sex, lose_sex, event_name):
print('')
all_pre_chase_event_mask = []
all_chase_event_mask = []
all_end_chase_event_mask = []
all_after_chase_event_mask = []
all_before_contact_event_mask = []
all_after_contact_event_mask = []
all_pre_chase_time = []
all_chase_time = []
all_end_chase_time = []
all_after_chase_time = []
all_before_contact_time = []
all_after_contact_time = []
video_trial_win_sex = []
video_trial_lose_sex = []
time_tol = 5
for enu, contact_t, ag_on_t, ag_off_t, event_times in zip(
np.arange(len(all_contact_t)), all_contact_t, all_ag_on_t, all_ag_off_t, all_event_t):
if len(ag_on_t) == 0:
continue
if len(event_times) == 0:
continue
pre_chase_event_mask = np.zeros_like(event_times)
chase_event_mask = np.zeros_like(event_times)
end_chase_event_mask = np.zeros_like(event_times)
after_chase_event_mask = np.zeros_like(event_times)
video_trial_win_sex.append(win_sex[enu])
video_trial_lose_sex.append(lose_sex[enu])
for chase_on_t, chase_off_t in zip(ag_on_t, ag_off_t):
pre_chase_event_mask[(event_times >= chase_on_t - time_tol) & (event_times < chase_on_t)] = 1
chase_event_mask[(event_times >= chase_on_t) & (event_times < chase_off_t - time_tol)] = 1
end_chase_event_mask[(event_times >= chase_off_t - time_tol) & (event_times < chase_off_t)] = 1
after_chase_event_mask[(event_times >= chase_off_t) & (event_times < chase_off_t + time_tol)] = 1
all_pre_chase_event_mask.append(pre_chase_event_mask)
all_chase_event_mask.append(chase_event_mask)
all_end_chase_event_mask.append(end_chase_event_mask)
all_after_chase_event_mask.append(after_chase_event_mask)
all_pre_chase_time.append(len(ag_on_t) * time_tol)
chasing_dur = (ag_off_t - ag_on_t) - time_tol
chasing_dur[chasing_dur < 0] = 0
all_chase_time.append(np.sum(chasing_dur))
all_end_chase_time.append(len(ag_on_t) * time_tol)
all_after_chase_time.append(len(ag_on_t) * time_tol)
before_countact_event_mask = np.zeros_like(event_times)
after_countact_event_mask = np.zeros_like(event_times)
for ct in contact_t:
before_countact_event_mask[(event_times >= ct - time_tol) & (event_times < ct)] = 1
after_countact_event_mask[(event_times >= ct) & (event_times < ct + time_tol)] = 1
all_before_contact_event_mask.append(before_countact_event_mask)
all_after_contact_event_mask.append(after_countact_event_mask)
all_before_contact_time.append(len(contact_t) * time_tol)
all_after_contact_time.append(len(contact_t) * time_tol)
all_pre_chase_time = np.array(all_pre_chase_time)
all_chase_time = np.array(all_chase_time)
all_end_chase_time = np.array(all_end_chase_time)
all_after_chase_time = np.array(all_after_chase_time)
all_before_contact_time = np.array(all_before_contact_time)
all_after_contact_time = np.array(all_after_contact_time)
video_trial_win_sex = np.array(video_trial_win_sex)
video_trial_lose_sex = np.array(video_trial_lose_sex)
all_pre_chase_time_ratio = all_pre_chase_time / (3 * 60 * 60)
all_chase_time_ratio = all_chase_time / (3 * 60 * 60)
all_end_chase_time_ratio = all_end_chase_time / (3 * 60 * 60)
all_after_chase_time_ratio = all_after_chase_time / (3 * 60 * 60)
all_before_countact_time_ratio = all_before_contact_time / (3 * 60 * 60)
all_after_countact_time_ratio = all_after_contact_time / (3 * 60 * 60)
all_pre_chase_event_ratio = np.array(list(map(lambda x: np.sum(x) / len(x), all_pre_chase_event_mask)))
all_chase_event_ratio = np.array(list(map(lambda x: np.sum(x) / len(x), all_chase_event_mask)))
all_end_chase_event_ratio = np.array(list(map(lambda x: np.sum(x) / len(x), all_end_chase_event_mask)))
all_after_chase_event_ratio = np.array(list(map(lambda x: np.sum(x) / len(x), all_after_chase_event_mask)))
all_before_countact_event_ratio = np.array(list(map(lambda x: np.sum(x) / len(x), all_before_contact_event_mask)))
all_after_countact_event_ratio = np.array(list(map(lambda x: np.sum(x) / len(x), all_after_contact_event_mask)))
for x, y, name in [[all_pre_chase_event_ratio, all_pre_chase_time_ratio, 'pre chase'],
[all_chase_event_ratio, all_chase_time_ratio, 'while chase'],
[all_end_chase_event_ratio, all_end_chase_time_ratio, 'end chase'],
[all_after_chase_event_ratio, all_after_chase_time_ratio, 'after chase'],
[all_before_countact_event_ratio, all_before_countact_time_ratio, 'pre contact'],
[all_after_countact_event_ratio, all_after_countact_time_ratio, 'post contact']]:
t, p = scp.ttest_rel(x, y)
print(f'{event_name} {name}: t={t:.2f} p={p:.3f}')
fig = plt.figure(figsize=(20 / 2.54, 12 / 2.54))
gs = gridspec.GridSpec(1, 2, left=0.1, bottom=0.15, right=0.95, top=0.9)
ax = fig.add_subplot(gs[0, 0])
ax_pie = fig.add_subplot(gs[0, 1])
ax.boxplot([all_pre_chase_event_ratio / all_pre_chase_time_ratio,
all_chase_event_ratio / all_chase_time_ratio,
all_end_chase_event_ratio / all_end_chase_time_ratio,
all_after_chase_event_ratio / all_after_chase_time_ratio,
all_before_countact_event_ratio / all_before_countact_time_ratio,
all_after_countact_event_ratio / all_after_countact_time_ratio], positions=np.arange(6), sym='',
zorder=2)
ylim = list(ax.get_ylim())
ylim[0] = -.1 if ylim[0] < -.1 else ylim[0]
ylim[1] = 1.1 if ylim[1] < 1.1 else ylim[1]
##############################################################################
for sex_w, sex_l in itertools.product(['m', 'f'], repeat=2):
mec = 'k' if sex_w == sex_l else 'None'
if 'lose' in event_name:
marker = 'o'
c = male_color if sex_l == 'm' else female_color
elif "win" in event_name:
marker = 'p'
c = male_color if sex_w == 'm' else female_color
else:
print('error')
embed()
quit()
values = np.array(all_pre_chase_event_ratio / all_pre_chase_time_ratio)[
(video_trial_win_sex == sex_w) & (video_trial_lose_sex == sex_l)]
ax.plot(np.ones_like(values) * 0, values, marker=marker, linestyle='None', color=c, mec=mec, markersize=8,
zorder=1)
values = np.array(all_chase_event_ratio / all_chase_time_ratio)[
(video_trial_win_sex == sex_w) & (video_trial_lose_sex == sex_l)]
ax.plot(np.ones_like(values) * 1, values, marker=marker, linestyle='None', color=c, mec=mec, markersize=8,
zorder=1)
values = np.array(all_end_chase_event_ratio / all_end_chase_time_ratio)[
(video_trial_win_sex == sex_w) & (video_trial_lose_sex == sex_l)]
ax.plot(np.ones_like(values) * 2, values, marker=marker, linestyle='None', color=c, mec=mec, markersize=8,
zorder=1)
values = np.array(all_after_chase_event_ratio / all_after_chase_time_ratio)[
(video_trial_win_sex == sex_w) & (video_trial_lose_sex == sex_l)]
ax.plot(np.ones_like(values) * 3, values, marker=marker, linestyle='None', color=c, mec=mec, markersize=8,
zorder=1)
values = np.array(all_before_countact_event_ratio / all_before_countact_time_ratio)[
(video_trial_win_sex == sex_w) & (video_trial_lose_sex == sex_l)]
ax.plot(np.ones_like(values) * 4, values, marker=marker, linestyle='None', color=c, mec=mec, markersize=8,
zorder=1)
values = np.array(all_after_countact_event_ratio / all_after_countact_time_ratio)[
(video_trial_win_sex == sex_w) & (video_trial_lose_sex == sex_l)]
ax.plot(np.ones_like(values) * 5, values, marker=marker, linestyle='None', color=c, mec=mec, markersize=8,
zorder=1)
##############################################################################
ax.plot(np.arange(7) - 1, np.ones(7), linestyle='dotted', lw=2, color='k')
ax.set_xlim(-0.5, 5.5)
ax.set_ylim(ylim[0], ylim[1])
ax.set_ylabel(r'rel. count$_{event}$ / rel. time$_{event}$', fontsize=12)
ax.set_xticks(np.arange(6))
ax.set_xticklabels([r'chase$_{before}$', r'chasing', r'chase$_{end}$', r'chase$_{after}$', 'contact$_{before}$',
'contact$_{after}$'], rotation=45)
ax.tick_params(labelsize=10)
fig.suptitle(f'{event_name}: n={len(np.hstack(all_event_t))}')
###############################################
flat_pre_chase_event_mask = np.hstack(all_pre_chase_event_mask)
flat_chase_event_mask = np.hstack(all_chase_event_mask)
flat_end_chase_event_mask = np.hstack(all_end_chase_event_mask)
flat_after_chase_event_mask = np.hstack(all_after_chase_event_mask)
flat_before_countact_event_mask = np.hstack(all_before_contact_event_mask)
flat_after_countact_event_mask = np.hstack(all_after_contact_event_mask)
flat_pre_chase_event_mask[(flat_before_countact_event_mask == 1) | (flat_after_countact_event_mask == 1)] = 0
flat_chase_event_mask[(flat_before_countact_event_mask == 1) | (flat_after_countact_event_mask == 1)] = 0
flat_end_chase_event_mask[(flat_before_countact_event_mask == 1) | (flat_after_countact_event_mask == 1)] = 0
flat_after_chase_event_mask[(flat_before_countact_event_mask == 1) | (flat_after_countact_event_mask == 1)] = 0
event_context_values = [np.sum(flat_pre_chase_event_mask) / len(flat_pre_chase_event_mask),
np.sum(flat_chase_event_mask) / len(flat_chase_event_mask),
np.sum(flat_end_chase_event_mask) / len(flat_end_chase_event_mask),
np.sum(flat_after_chase_event_mask) / len(flat_after_chase_event_mask),
np.sum(flat_before_countact_event_mask) / len(flat_before_countact_event_mask),
np.sum(flat_after_countact_event_mask) / len(flat_after_countact_event_mask)]
event_context_values.append(1 - np.sum(event_context_values))
time_context_values = [np.sum(all_pre_chase_time), np.sum(all_chase_time), np.sum(all_end_chase_time),
np.sum(all_after_chase_time), np.sum(all_before_contact_time),
np.sum(all_after_contact_time)]
time_context_values.append(len(all_pre_chase_time) * 3 * 60 * 60 - np.sum(time_context_values))
time_context_values /= np.sum(time_context_values)
# fig, ax = plt.subplots(figsize=(12/2.54,12/2.54))
size = 0.3
outer_colors = ['tab:red', 'tab:orange', 'yellow', 'tab:green', 'k', 'tab:brown', 'tab:grey']
ax_pie.pie(event_context_values, radius=1, colors=outer_colors,
wedgeprops=dict(width=size, edgecolor='w'), startangle=90, center=(0, 1))
ax_pie.pie(time_context_values, radius=1 - size, colors=outer_colors,
wedgeprops=dict(width=size, edgecolor='w', alpha=.6), startangle=90, center=(0, 1))
ax_pie.set_title(r'event context')
legend_elements = [Patch(facecolor='tab:red', edgecolor='w', label='%.1f' % (event_context_values[0] * 100) + '%'),
Patch(facecolor='tab:orange', edgecolor='w',
label='%.1f' % (event_context_values[1] * 100) + '%'),
Patch(facecolor='yellow', edgecolor='w', label='%.1f' % (event_context_values[2] * 100) + '%'),
Patch(facecolor='tab:green', edgecolor='w',
label='%.1f' % (event_context_values[3] * 100) + '%'),
Patch(facecolor='k', edgecolor='w', label='%.1f' % (event_context_values[4] * 100) + '%'),
Patch(facecolor='tab:brown', edgecolor='w',
label='%.1f' % (event_context_values[5] * 100) + '%'),
Patch(facecolor='tab:red', alpha=0.6, edgecolor='w',
label='%.1f' % (time_context_values[0] * 100) + '%'),
Patch(facecolor='tab:orange', alpha=0.6, edgecolor='w',
label='%.1f' % (time_context_values[1] * 100) + '%'),
Patch(facecolor='yellow', alpha=0.6, edgecolor='w',
label='%.1f' % (time_context_values[2] * 100) + '%'),
Patch(facecolor='tab:green', alpha=0.6, edgecolor='w',
label='%.1f' % (time_context_values[3] * 100) + '%'),
Patch(facecolor='k', alpha=0.6, edgecolor='w',
label='%.1f' % (time_context_values[4] * 100) + '%'),
Patch(facecolor='tab:brown', alpha=0.6, edgecolor='w',
label='%.1f' % (time_context_values[5] * 100) + '%')]
ax_pie.legend(handles=legend_elements, loc='lower right', ncol=2, bbox_to_anchor=(1.15, -0.25), frameon=False,
fontsize=9)
plt.savefig(os.path.join(os.path.split(__file__)[0], 'figures', 'event_time_corr', f'{event_name}_categories.png'),
dpi=300)
plt.close()
# plt.show()
def main(base_path):
@ -196,8 +490,8 @@ def main(base_path):
trial_summary = pd.read_csv(os.path.join(base_path, 'trial_summary.csv'), index_col=0)
chirp_notes = pd.read_csv(os.path.join(base_path, 'chirp_notes.csv'), index_col=0)
trial_mask = chirp_notes['good'] == 1
# trial_summary = trial_summary[chirp_notes['good'] == 1]
### data processing #######################
all_rise_times_lose = []
all_rise_times_win = []
all_chirp_times_lose = []
@ -268,11 +562,13 @@ def main(base_path):
win_sex = np.array(win_sex)
lose_sex = np.array(lose_sex)
### inter event intervalls ###
iei_analysis(all_chirp_times_lose, win_sex, lose_sex, kernal_w=1, title=r'chirps$_{lose}$')
iei_analysis(all_chirp_times_win, win_sex, lose_sex, kernal_w=1, title=r'chirps$_{win}$')
iei_analysis(all_rise_times_lose, win_sex, lose_sex, kernal_w=5, title=r'rises$_{lose}$')
iei_analysis(all_rise_times_win, win_sex, lose_sex, kernal_w=50, title=r'rises$_{win}$')
### event progressions ###
print('')
relative_rate_progression(all_chirp_times_lose, title=r'chirp$_{lose}$')
relative_rate_progression(all_chirp_times_win, title=r'chirp$_{win}$')
@ -282,232 +578,72 @@ def main(base_path):
relative_rate_progression(all_contact_t, title=r'contact')
relative_rate_progression(all_ag_on_t, title=r'chasing')
chase_time_progression(all_ag_on_t, all_ag_off_t)
#############################################################################
### event category signals ###
for all_event_t, event_name in zip([all_chirp_times_lose, all_chirp_times_win, all_rise_times_lose, all_rise_times_win],
[r'chirps$_{lose}$', r'chirps$_{win}$', r'rises$_{lose}$', r'rises$_{win}$']):
print('')
all_pre_chase_event_mask = []
all_chase_event_mask = []
all_end_chase_event_mask = []
all_after_chase_event_mask = []
all_before_contact_event_mask = []
all_after_contact_event_mask = []
all_pre_chase_time = []
all_chase_time = []
all_end_chase_time = []
all_after_chase_time = []
all_before_contact_time = []
all_after_contact_time = []
video_trial_win_sex = []
video_trial_lose_sex = []
time_tol = 5
for enu, contact_t, ag_on_t, ag_off_t, event_times in zip(
np.arange(len(all_contact_t)), all_contact_t, all_ag_on_t, all_ag_off_t, all_event_t):
if len(ag_on_t) == 0:
continue
if len(event_times) == 0:
continue
pre_chase_event_mask = np.zeros_like(event_times)
chase_event_mask = np.zeros_like(event_times)
end_chase_event_mask = np.zeros_like(event_times)
after_chase_event_mask = np.zeros_like(event_times)
video_trial_win_sex.append(win_sex[enu])
video_trial_lose_sex.append(lose_sex[enu])
for chase_on_t, chase_off_t in zip(ag_on_t, ag_off_t):
pre_chase_event_mask[(event_times >= chase_on_t - time_tol) & (event_times < chase_on_t)] = 1
chase_event_mask[(event_times >= chase_on_t) & (event_times < chase_off_t - time_tol)] = 1
end_chase_event_mask[(event_times >= chase_off_t - time_tol) & (event_times < chase_off_t)] = 1
after_chase_event_mask[(event_times >= chase_off_t) & (event_times < chase_off_t + time_tol)] = 1
all_pre_chase_event_mask.append(pre_chase_event_mask)
all_chase_event_mask.append(chase_event_mask)
all_end_chase_event_mask.append(end_chase_event_mask)
all_after_chase_event_mask.append(after_chase_event_mask)
all_pre_chase_time.append(len(ag_on_t) * time_tol)
chasing_dur = (ag_off_t - ag_on_t) - time_tol
chasing_dur[chasing_dur < 0 ] = 0
all_chase_time.append(np.sum(chasing_dur))
all_end_chase_time.append(len(ag_on_t) * time_tol)
all_after_chase_time.append(len(ag_on_t) * time_tol)
before_countact_event_mask = np.zeros_like(event_times)
after_countact_event_mask = np.zeros_like(event_times)
for ct in contact_t:
before_countact_event_mask[(event_times >= ct-time_tol) & (event_times < ct)] = 1
after_countact_event_mask[(event_times >= ct) & (event_times < ct+time_tol)] = 1
all_before_contact_event_mask.append(before_countact_event_mask)
all_after_contact_event_mask.append(after_countact_event_mask)
all_before_contact_time.append(len(contact_t) * time_tol)
all_after_contact_time.append(len(contact_t) * time_tol)
all_pre_chase_time = np.array(all_pre_chase_time)
all_chase_time = np.array(all_chase_time)
all_end_chase_time = np.array(all_end_chase_time)
all_after_chase_time = np.array(all_after_chase_time)
all_before_contact_time = np.array(all_before_contact_time)
all_after_contact_time = np.array(all_after_contact_time)
video_trial_win_sex = np.array(video_trial_win_sex)
video_trial_lose_sex = np.array(video_trial_lose_sex)
all_pre_chase_time_ratio = all_pre_chase_time / (3*60*60)
all_chase_time_ratio = all_chase_time / (3*60*60)
all_end_chase_time_ratio = all_end_chase_time / (3*60*60)
all_after_chase_time_ratio = all_after_chase_time / (3*60*60)
all_before_countact_time_ratio = all_before_contact_time / (3*60*60)
all_after_countact_time_ratio = all_after_contact_time / (3*60*60)
all_pre_chase_event_ratio = np.array(list(map(lambda x: np.sum(x)/len(x), all_pre_chase_event_mask)))
all_chase_event_ratio = np.array(list(map(lambda x: np.sum(x)/len(x), all_chase_event_mask)))
all_end_chase_event_ratio = np.array(list(map(lambda x: np.sum(x)/len(x), all_end_chase_event_mask)))
all_after_chase_event_ratio = np.array(list(map(lambda x: np.sum(x)/len(x), all_after_chase_event_mask)))
all_before_countact_event_ratio = np.array(list(map(lambda x: np.sum(x)/len(x), all_before_contact_event_mask)))
all_after_countact_event_ratio = np.array(list(map(lambda x: np.sum(x)/len(x), all_after_contact_event_mask)))
for x, y, name in [[all_pre_chase_event_ratio, all_pre_chase_time_ratio, 'pre chase'],
[all_chase_event_ratio, all_chase_time_ratio, 'while chase'],
[all_end_chase_event_ratio, all_end_chase_time_ratio, 'end chase'],
[all_after_chase_event_ratio, all_after_chase_time_ratio, 'after chase'],
[all_before_countact_event_ratio, all_before_countact_time_ratio, 'pre contact'],
[all_after_countact_event_ratio, all_after_countact_time_ratio, 'post contact']]:
t, p = scp.ttest_rel(x, y)
print(f'{event_name} {name}: t={t:.2f} p={p:.3f}')
fig = plt.figure(figsize=(20/2.54, 12/2.54))
gs = gridspec.GridSpec(1, 2, left=0.1, bottom=0.15, right=0.95, top=0.9)
ax = fig.add_subplot(gs[0, 0])
ax_pie = fig.add_subplot(gs[0, 1])
ax.boxplot([all_pre_chase_event_ratio/all_pre_chase_time_ratio,
all_chase_event_ratio/all_chase_time_ratio,
all_end_chase_event_ratio/all_end_chase_time_ratio,
all_after_chase_event_ratio/all_after_chase_time_ratio,
all_before_countact_event_ratio/all_before_countact_time_ratio,
all_after_countact_event_ratio/all_after_countact_time_ratio], positions=np.arange(6), sym='', zorder=2)
ylim = list(ax.get_ylim())
ylim[0] = -.1 if ylim[0] < -.1 else ylim[0]
ylim[1] = 1.1 if ylim[1] < 1.1 else ylim[1]
##############################################################################
for sex_w, sex_l in itertools.product(['m', 'f'], repeat=2):
mec = 'k' if sex_w == sex_l else 'None'
if 'lose' in event_name:
marker='o'
c = male_color if sex_l == 'm' else female_color
elif "win" in event_name:
marker='p'
c = male_color if sex_w == 'm' else female_color
event_category_signal(all_event_t, all_contact_t, all_ag_on_t, all_ag_off_t, win_sex, lose_sex, event_name)
embed()
quit()
chase_dur = []
chase_chirp_count = []
dt_start_first_chirp = []
dt_end_first_chirp = []
for ag_on_t, ag_off_t, chirp_times_lose in zip(all_ag_on_t, all_ag_off_t, all_chirp_times_lose):
if len(chirp_times_lose) == 0:
continue
for a_on, a_off in zip(ag_on_t, ag_off_t):
chase_dur.append(a_off - a_on)
chirp_t_oi = chirp_times_lose[(chirp_times_lose > a_on) & (chirp_times_lose <= a_off)]
chase_chirp_count.append(len(chirp_t_oi))
if len(chirp_t_oi) >= 1:
dt_start_first_chirp.append(chirp_t_oi[0] - a_on)
dt_end_first_chirp.append(a_off - chirp_t_oi[0])
else:
print('error')
embed()
quit()
values = np.array(all_pre_chase_event_ratio/all_pre_chase_time_ratio)[(video_trial_win_sex == sex_w) & (video_trial_lose_sex == sex_l)]
ax.plot(np.ones_like(values) * 0, values, marker=marker, linestyle='None', color=c, mec=mec, markersize=8, zorder=1)
values = np.array(all_chase_event_ratio/all_chase_time_ratio)[(video_trial_win_sex == sex_w) & (video_trial_lose_sex == sex_l)]
ax.plot(np.ones_like(values) * 1, values, marker=marker, linestyle='None', color=c, mec=mec, markersize=8, zorder=1)
values = np.array(all_end_chase_event_ratio/all_end_chase_time_ratio)[(video_trial_win_sex == sex_w) & (video_trial_lose_sex == sex_l)]
ax.plot(np.ones_like(values) * 2, values, marker=marker, linestyle='None', color=c, mec=mec, markersize=8, zorder=1)
values = np.array(all_after_chase_event_ratio/all_after_chase_time_ratio)[(video_trial_win_sex == sex_w) & (video_trial_lose_sex == sex_l)]
ax.plot(np.ones_like(values) * 3, values, marker=marker, linestyle='None', color=c, mec=mec, markersize=8, zorder=1)
values = np.array(all_before_countact_event_ratio/all_before_countact_time_ratio)[(video_trial_win_sex == sex_w) & (video_trial_lose_sex == sex_l)]
ax.plot(np.ones_like(values) * 4, values, marker=marker, linestyle='None', color=c, mec=mec, markersize=8, zorder=1)
values = np.array(all_after_countact_event_ratio/all_after_countact_time_ratio)[(video_trial_win_sex == sex_w) & (video_trial_lose_sex == sex_l)]
ax.plot(np.ones_like(values) * 5, values, marker=marker, linestyle='None', color=c, mec=mec, markersize=8, zorder=1)
# ax.plot(np.ones_like(all_pre_chase_event_ratio) * 0, all_pre_chase_event_ratio/all_pre_chase_time_ratio, 'ok')
# ax.plot(np.ones_like(all_chase_event_ratio) * 1, all_chase_event_ratio/all_chase_time_ratio, 'ok')
# ax.plot(np.ones_like(all_end_chase_event_ratio) * 2, all_end_chase_event_ratio/all_end_chase_time_ratio, 'ok')
# ax.plot(np.ones_like(all_after_chase_event_ratio) * 3, all_after_chase_event_ratio/all_after_chase_time_ratio, 'ok')
# ax.plot(np.ones_like(all_before_countact_event_ratio) * 4, all_before_countact_event_ratio/all_before_countact_time_ratio, 'ok')
##############################################################################
ax.plot(np.arange(7)-1, np.ones(7), linestyle='dotted', lw=2, color='k')
ax.set_xlim(-0.5, 5.5)
ax.set_ylim(ylim[0], ylim[1])
ax.set_ylabel(r'rel. count$_{event}$ / rel. time$_{event}$', fontsize=12)
ax.set_xticks(np.arange(6))
ax.set_xticklabels([r'chase$_{before}$', r'chasing', r'chase$_{end}$', r'chase$_{after}$', 'contact$_{before}$', 'contact$_{after}$'], rotation=45)
ax.tick_params(labelsize=10)
# ax.set_title(event_name)
fig.suptitle(f'{event_name}: n={len(np.hstack(all_event_t))}')
# plt.show()
###############################################
flat_pre_chase_event_mask = np.hstack(all_pre_chase_event_mask)
flat_chase_event_mask = np.hstack(all_chase_event_mask)
flat_end_chase_event_mask = np.hstack(all_end_chase_event_mask)
flat_after_chase_event_mask = np.hstack(all_after_chase_event_mask)
flat_before_countact_event_mask = np.hstack(all_before_contact_event_mask)
flat_after_countact_event_mask = np.hstack(all_after_contact_event_mask)
flat_pre_chase_event_mask[(flat_before_countact_event_mask == 1) | (flat_after_countact_event_mask == 1)] = 0
flat_chase_event_mask[(flat_before_countact_event_mask == 1) | (flat_after_countact_event_mask == 1)] = 0
flat_end_chase_event_mask[(flat_before_countact_event_mask == 1) | (flat_after_countact_event_mask == 1)] = 0
flat_after_chase_event_mask[(flat_before_countact_event_mask == 1) | (flat_after_countact_event_mask == 1)] = 0
event_context_values = [np.sum(flat_pre_chase_event_mask) / len(flat_pre_chase_event_mask),
np.sum(flat_chase_event_mask) / len(flat_chase_event_mask),
np.sum(flat_end_chase_event_mask) / len(flat_end_chase_event_mask),
np.sum(flat_after_chase_event_mask) / len(flat_after_chase_event_mask),
np.sum(flat_before_countact_event_mask) / len(flat_before_countact_event_mask),
np.sum(flat_after_countact_event_mask) / len(flat_after_countact_event_mask)]
event_context_values.append(1 - np.sum(event_context_values))
time_context_values = [np.sum(all_pre_chase_time), np.sum(all_chase_time), np.sum(all_end_chase_time),
np.sum(all_after_chase_time), np.sum(all_before_contact_time), np.sum(all_after_contact_time)]
time_context_values.append(len(all_pre_chase_time) * 3*60*60 - np.sum(time_context_values))
time_context_values /= np.sum(time_context_values)
# fig, ax = plt.subplots(figsize=(12/2.54,12/2.54))
size = 0.3
outer_colors = ['tab:red', 'tab:orange', 'yellow', 'tab:green', 'k','tab:brown', 'tab:grey']
ax_pie.pie(event_context_values, radius=1, colors=outer_colors,
wedgeprops=dict(width=size, edgecolor='w'), startangle=90, center=(0, 1))
ax_pie.pie(time_context_values, radius=1-size, colors=outer_colors,
wedgeprops=dict(width=size, edgecolor='w', alpha=.6), startangle=90, center=(0, 1))
dt_start_first_chirp.append(np.nan)
dt_end_first_chirp.append(np.nan)
fig = plt.figure(figsize=(21/2.54, 19/2.54))
gs = gridspec.GridSpec(2, 2, left=.15, bottom=0.1, right=0.95, top=0.95)
ax = []
ax.append(fig.add_subplot(gs[0, 0]))
ax.append(fig.add_subplot(gs[0, 1], sharex=ax[0]))
ax.append(fig.add_subplot(gs[1, 0], sharex=ax[0]))
ax.append(fig.add_subplot(gs[1, 1], sharex=ax[0]))
ax[0].plot(chase_dur, chase_chirp_count, '.')
ax[1].plot(chase_dur, np.array(chase_chirp_count) / np.array(chase_dur), '.')
ax[2].plot(chase_dur, dt_start_first_chirp, '.')
ax[3].plot(chase_dur, dt_end_first_chirp, '.')
ax[2].plot([0, 60], [0, 60], '-k', lw=1)
ax[3].plot([0, 60], [0, 60], '-k', lw=1)
ax[2].set_xlabel(r'chase$_{duration}$ [s]', fontsize=12)
ax[3].set_xlabel(r'chase$_{duration}$ [s]', fontsize=12)
ax[0].set_ylabel('chirps [n]', fontsize=12)
ax[1].set_ylabel('chirp rate [Hz]', fontsize=12)
ax[2].set_ylabel(r'$\Delta$t chase$_{on}$ - chirp$_{0}$', fontsize=12)
ax[3].set_ylabel(r'$\Delta$t chirp$_{0}$ - chase$_{off}$', fontsize=12)
chase_chirp_count = np.array(chase_chirp_count)
chase_dur = np.array(chase_dur)
chirp_rate = chase_chirp_count / chase_dur
r, p = scp.pearsonr(chase_dur[chase_chirp_count >= 3], chase_chirp_count[chase_chirp_count >= 3])
ax[0].text(1, 1, f'r= {r:.2f} p={p:.3f}', transform=ax[0].transAxes, ha='right', va='bottom')
ax_pie.set_title(r'event context')
legend_elements = [Patch(facecolor='tab:red', edgecolor='w', label='%.1f' % (event_context_values[0] * 100) + '%'),
Patch(facecolor='tab:orange', edgecolor='w', label='%.1f' % (event_context_values[1] * 100) + '%'),
Patch(facecolor='yellow', edgecolor='w', label='%.1f' % (event_context_values[2] * 100) + '%'),
Patch(facecolor='tab:green', edgecolor='w', label='%.1f' % (event_context_values[3] * 100) + '%'),
Patch(facecolor='k', edgecolor='w', label='%.1f' % (event_context_values[4] * 100) + '%'),
Patch(facecolor='tab:brown', edgecolor='w', label='%.1f' % (event_context_values[5] * 100) + '%'),
Patch(facecolor='tab:red', alpha=0.6, edgecolor='w', label='%.1f' % (time_context_values[0] * 100) + '%'),
Patch(facecolor='tab:orange', alpha=0.6, edgecolor='w', label='%.1f' % (time_context_values[1] * 100) + '%'),
Patch(facecolor='yellow', alpha=0.6, edgecolor='w', label='%.1f' % (time_context_values[2] * 100) + '%'),
Patch(facecolor='tab:green', alpha=0.6, edgecolor='w', label='%.1f' % (time_context_values[3] * 100) + '%'),
Patch(facecolor='k', alpha=0.6, edgecolor='w', label='%.1f' % (time_context_values[4] * 100) + '%'),
Patch(facecolor='tab:brown', alpha=0.6, edgecolor='w', label='%.1f' % (time_context_values[5] * 100) + '%')]
ax_pie.legend(handles=legend_elements, loc='lower right', ncol=2, bbox_to_anchor=(1.15, -0.25), frameon=False, fontsize=9)
plt.savefig(os.path.join(os.path.split(__file__)[0], 'figures', 'event_time_corr', f'{event_name}_categories.png'), dpi=300)
plt.close()
# plt.show()
r, p = scp.pearsonr(chase_dur[chase_chirp_count >= 3], chirp_rate[chase_chirp_count >= 3])
ax[1].text(1, 1, f'r= {r:.2f} p={p:.3f}', transform=ax[1].transAxes, ha='right', va='bottom')
plt.show()
fig, ax = plt.subplots()
if __name__ == '__main__':

View File

@ -279,6 +279,9 @@ def main(base_path):
win_rises_centered_on_lose_chirps = []
win_rises_count = []
ag_off_centered_on_ag_on = []
ag_count = []
sex_win = []
sex_lose = []
@ -362,6 +365,9 @@ def main(base_path):
win_rises_centered_on_lose_chirps.append(event_centered_times(chirp_times[1], rise_times[0]))
win_rises_count.append(len(rise_times[0]))
ag_off_centered_on_ag_on.append(event_centered_times(ag_on_off_t_GRID[:, 0], ag_on_off_t_GRID[:, 1]))
ag_count.append(len(ag_on_off_t_GRID))
sex_win.append(trial['sex_win'])
sex_lose.append(trial['sex_lose'])
@ -399,7 +405,9 @@ def main(base_path):
[win_rises_centered_on_ag_off_t, win_rises_count, r'rise$_{win}$ on chase$_{off}$'],
[win_rises_centered_on_ag_on_t, win_rises_count, r'rise$_{win}$ on chase$_{on}$'],
[win_rises_centered_on_contact_t, win_rises_count, r'rise$_{win}$ on contact'],
[win_rises_centered_on_lose_chirps, win_rises_count, r'rise$_{win}$ on chirp$_{lose}$']]:
[win_rises_centered_on_lose_chirps, win_rises_count, r'rise$_{win}$ on chirp$_{lose}$'],
[ag_off_centered_on_ag_on, ag_count, r'chase$_{off}$ on chase$_{on}$']]:
save_str = title.replace('$', '').replace('{', '').replace('}', '').replace(' ', '_')