analysis almost complete

This commit is contained in:
Till Raab 2023-06-05 15:40:46 +02:00
parent 11b58dda36
commit bb45677bd1
2 changed files with 342 additions and 135 deletions

View File

@ -10,61 +10,101 @@ from event_time_correlations import load_and_converete_boris_events, kde, gauss
female_color, male_color = '#e74c3c', '#3498db'
def iei_analysis(all_chirp_times_lose, all_chirp_times_win, all_rise_times_lose, all_rise_times_win, win_sex, lose_sex):
ici_lose = []
ici_win = []
iri_lose = []
iri_win = []
for i in range(len(all_chirp_times_lose)):
ici_lose.append(np.diff(all_chirp_times_lose[i]))
ici_win.append(np.diff(all_chirp_times_win[i]))
iri_lose.append(np.diff(all_rise_times_lose[i]))
iri_win.append(np.diff(all_rise_times_win[i]))
for iei, kernal_w in zip([ici_lose, ici_win, iri_lose, iri_win],
[1, 1, 5, 50]):
fig = plt.figure(figsize=(20 / 2.54, 12 / 2.54))
gs = gridspec.GridSpec(2, 2, left=0.1, bottom=0.1, right=0.95, top=0.95)
ax = []
ax.append(fig.add_subplot(gs[0, 0]))
ax.append(fig.add_subplot(gs[0, 1], sharey=ax[0], sharex=ax[0]))
ax.append(fig.add_subplot(gs[1, 0], sharey=ax[0], sharex=ax[0]))
ax.append(fig.add_subplot(gs[1, 1], sharey=ax[0], sharex=ax[0]))
for i in range(len(iei)):
if win_sex[i] == 'm':
if lose_sex[i] == 'm':
color, linestyle = male_color, '-'
sp = 0
else:
color, linestyle = male_color, '--'
sp = 1
def iei_analysis(event_times, win_sex, lose_sex, kernal_w, title=''):
iei = []
for i in range(len(event_times)):
iei.append(np.diff(event_times[i]))
fig = plt.figure(figsize=(20 / 2.54, 12 / 2.54))
gs = gridspec.GridSpec(2, 2, left=0.1, bottom=0.1, right=0.95, top=0.9)
ax = []
ax.append(fig.add_subplot(gs[0, 0]))
ax.append(fig.add_subplot(gs[0, 1], sharey=ax[0], sharex=ax[0]))
ax.append(fig.add_subplot(gs[1, 0], sharey=ax[0], sharex=ax[0]))
ax.append(fig.add_subplot(gs[1, 1], sharey=ax[0], sharex=ax[0]))
for i in range(len(iei)):
if win_sex[i] == 'm':
if lose_sex[i] == 'm':
color, linestyle = male_color, '-'
sp = 0
else:
if lose_sex[i] == 'm':
color, linestyle = female_color, '--'
sp = 2
else:
color, linestyle = female_color, '-'
sp = 3
color, linestyle = male_color, '--'
sp = 1
else:
if lose_sex[i] == 'm':
color, linestyle = female_color, '--'
sp = 2
else:
color, linestyle = female_color, '-'
sp = 3
conv_y = np.arange(0, np.percentile(np.hstack(iei), 80), .5)
kde_array = kde(iei[i], conv_y, kernal_w=kernal_w, kernal_h=1)
conv_y_chirp_lose = np.arange(0, np.percentile(np.hstack(iei), 90), .5)
kde_array = kde(iei[i], conv_y_chirp_lose, kernal_w=kernal_w, kernal_h=1)
# kde_array /= np.sum(kde_array)
ax[sp].plot(conv_y, kde_array, zorder=2, color=color, linestyle=linestyle, lw=2)
# kde_array /= np.sum(kde_array)
ax[sp].plot(conv_y_chirp_lose, kde_array, zorder=2, color=color, linestyle=linestyle, lw=2)
ax[0].set_xlim(conv_y[0], conv_y[-1])
ax[0].set_ylabel('event rate [Hz]', fontsize=12)
ax[2].set_ylabel('event rate [Hz]', fontsize=12)
ax[2].set_xlabel('time [s]', fontsize=12)
ax[3].set_xlabel('time [s]', fontsize=12)
fig.suptitle(title, fontsize=12)
plt.setp(ax[1].get_yticklabels(), visible=False)
plt.setp(ax[3].get_yticklabels(), visible=False)
for a in ax:
a.tick_params(labelsize=10)
plt.setp(ax[1].get_yticklabels(), visible=False)
plt.setp(ax[3].get_yticklabels(), visible=False)
plt.setp(ax[0].get_xticklabels(), visible=False)
plt.setp(ax[1].get_xticklabels(), visible=False)
plt.show()
plt.setp(ax[0].get_xticklabels(), visible=False)
plt.setp(ax[1].get_xticklabels(), visible=False)
plt.show()
# for iei, kernal_w in zip([ici_lose, ici_win, iri_lose, iri_win],
# [1, 1, 5, 50]):
#
# fig = plt.figure(figsize=(20 / 2.54, 12 / 2.54))
# gs = gridspec.GridSpec(2, 2, left=0.1, bottom=0.1, right=0.95, top=0.95)
# ax = []
# ax.append(fig.add_subplot(gs[0, 0]))
# ax.append(fig.add_subplot(gs[0, 1], sharey=ax[0], sharex=ax[0]))
# ax.append(fig.add_subplot(gs[1, 0], sharey=ax[0], sharex=ax[0]))
# ax.append(fig.add_subplot(gs[1, 1], sharey=ax[0], sharex=ax[0]))
#
# for i in range(len(iei)):
# if win_sex[i] == 'm':
# if lose_sex[i] == 'm':
# color, linestyle = male_color, '-'
# sp = 0
# else:
# color, linestyle = male_color, '--'
# sp = 1
# else:
# if lose_sex[i] == 'm':
# color, linestyle = female_color, '--'
# sp = 2
# else:
# color, linestyle = female_color, '-'
# sp = 3
#
#
# conv_y = np.arange(0, np.percentile(np.hstack(iei), 90), .5)
# kde_array = kde(iei[i], conv_y, kernal_w=kernal_w, kernal_h=1)
#
# # kde_array /= np.sum(kde_array)
# ax[sp].plot(conv_y, kde_array, zorder=2, color=color, linestyle=linestyle, lw=2)
#
# plt.setp(ax[1].get_yticklabels(), visible=False)
# plt.setp(ax[3].get_yticklabels(), visible=False)
#
#
# plt.setp(ax[0].get_xticklabels(), visible=False)
# plt.setp(ax[1].get_xticklabels(), visible=False)
# plt.show()
def relative_rate_progression(all_event_t, title=''):
@ -180,120 +220,200 @@ def main(base_path):
win_sex.append(trial['sex_win'])
lose_sex.append(trial['sex_lose'])
embed()
quit()
iei_analysis(all_chirp_times_lose, all_chirp_times_win, all_rise_times_lose, all_rise_times_win, win_sex, lose_sex)
iei_analysis(all_chirp_times_lose, win_sex, lose_sex, kernal_w=1, title=r'chirps$_{lose}$')
iei_analysis(all_chirp_times_win, win_sex, lose_sex, kernal_w=1, title=r'chirps$_{win}$')
iei_analysis(all_rise_times_lose, win_sex, lose_sex, kernal_w=5, title=r'rises$_{lose}$')
iei_analysis(all_rise_times_win, win_sex, lose_sex, kernal_w=50, title=r'rises$_{win}$')
relative_rate_progression(all_chirp_times_lose, title=r'chirp$_{lose}$')
relative_rate_progression(all_chirp_times_win, title=r'chirp$_{win}$')
relative_rate_progression(all_rise_times_lose, title=r'rise$_{lose}$')
relative_rate_progression(all_rise_times_win, title=r'rise$_{win}$')
relative_rate_progression(all_rise_times_lose, title=r'rises$_{lose}$')
relative_rate_progression(all_rise_times_win, title=r'rises$_{win}$')
relative_rate_progression(all_contact_t, title=r'contact')
relative_rate_progression(all_ag_on_t, title=r'chasing')
all_chase_chirp_mask = []
all_chasing_t = []
all_chase_off_chirp_mask = []
all_chase_off_t = []
all_contact_chirp_mask = []
all_physical_t = []
#####################################################################################################
# all_chase_chirp_mask = []
# all_chasing_t = []
#
# all_chase_off_chirp_mask = []
# all_chase_off_t = []
#
# all_contact_chirp_mask = []
# all_physical_t = []
all_pre_chase_event_mask = []
all_chase_event_mask = []
all_end_chase_event_mask = []
all_after_chase_event_mask = []
all_around_countact_event_mask = []
all_pre_chase_time = []
all_chase_time = []
all_end_chase_time = []
all_after_chase_time = []
all_around_countact_time = []
time_tol = 2
for contact_t, ag_on_t, ag_off_t, chirp_times_lose in zip(all_contact_t, all_ag_on_t, all_ag_off_t, all_chirp_times_lose):
if len(contact_t) == 0:
if len(ag_on_t) == 0:
continue
# ToDo: the 5 seconds are a little dirty... sometimes 5s is longer than chasing dur
chase_chirp_mask = np.zeros_like(chirp_times_lose)
chase_off_chirp_mask = np.zeros_like(chirp_times_lose)
pre_chase_event_mask = np.zeros_like(chirp_times_lose)
chase_event_mask = np.zeros_like(chirp_times_lose)
end_chase_event_mask = np.zeros_like(chirp_times_lose)
after_chase_event_mask = np.zeros_like(chirp_times_lose)
# chase_chirp_mask = np.zeros_like(chirp_times_lose)
# chase_off_chirp_mask = np.zeros_like(chirp_times_lose)
for chase_on_t, chase_off_t in zip(ag_on_t, ag_off_t):
chase_chirp_mask[(chirp_times_lose >= chase_on_t) & (chirp_times_lose < chase_off_t-time_tol)] = 1
chase_off_chirp_mask[(chirp_times_lose >= chase_off_t-time_tol) & (chirp_times_lose < chase_off_t+time_tol)] = 1
all_chase_chirp_mask.append(chase_chirp_mask)
all_chase_off_chirp_mask.append(chase_off_chirp_mask)
# chase_chirp_mask[(chirp_times_lose >= chase_on_t) & (chirp_times_lose < chase_off_t-time_tol)] = 1
# chase_off_chirp_mask[(chirp_times_lose >= chase_off_t-time_tol) & (chirp_times_lose < chase_off_t+time_tol)] = 1
pre_chase_event_mask[(chirp_times_lose >= chase_on_t - time_tol) & (chirp_times_lose < chase_on_t)] = 1
chase_event_mask[(chirp_times_lose >= chase_on_t) & (chirp_times_lose < chase_off_t - time_tol)] = 1
end_chase_event_mask[(chirp_times_lose >= chase_off_t - time_tol) & (chirp_times_lose < chase_off_t)] = 1
after_chase_event_mask[(chirp_times_lose >= chase_off_t) & (chirp_times_lose < chase_off_t + time_tol)] = 1
chasing_dur = (ag_off_t - ag_on_t) - time_tol
chasing_dur[chasing_dur < 0] = 0
chasing_t = np.sum(chasing_dur)
all_chasing_t.append(chasing_t)
all_chase_off_t.append(len(ag_off_t) * time_tol*2)
# all_chase_chirp_mask.append(chase_chirp_mask)
# all_chase_off_chirp_mask.append(chase_off_chirp_mask)
all_pre_chase_event_mask.append(pre_chase_event_mask)
all_chase_event_mask.append(chase_event_mask)
all_end_chase_event_mask.append(end_chase_event_mask)
all_after_chase_event_mask.append(after_chase_event_mask)
contact_chirp_mask = np.zeros_like(chirp_times_lose)
all_pre_chase_time.append(len(ag_on_t) * time_tol)
chasing_dur = (ag_off_t - ag_on_t) - time_tol
chasing_dur[chasing_dur < 0 ] = 0
all_chase_time.append(np.sum(chasing_dur))
all_end_chase_time.append(len(ag_on_t) * time_tol)
all_after_chase_time.append(len(ag_on_t) * time_tol)
# chasing_dur = (ag_off_t - ag_on_t) - time_tol
# chasing_dur[chasing_dur < 0] = 0
# chasing_t = np.sum(chasing_dur)
# all_chasing_t.append(chasing_t)
# all_chase_off_t.append(len(ag_off_t) * time_tol*2)
# contact_chirp_mask = np.zeros_like(chirp_times_lose)
around_countact_event_mask = np.zeros_like(chirp_times_lose)
for ct in contact_t:
contact_chirp_mask[(chirp_times_lose >= ct-time_tol) & (chirp_times_lose < ct+time_tol)] = 1
all_contact_chirp_mask.append(contact_chirp_mask)
around_countact_event_mask[(chirp_times_lose >= ct-time_tol) & (chirp_times_lose < ct+time_tol)] = 1
all_around_countact_event_mask.append(around_countact_event_mask)
all_around_countact_time.append(len(contact_t) * time_tol*2)
# all_physical_t.append(len(contact_t) * time_tol*2)
all_pre_chase_time = np.array(all_pre_chase_time)
all_chase_time = np.array(all_chase_time)
all_end_chase_time = np.array(all_end_chase_time)
all_after_chase_time = np.array(all_after_chase_time)
all_around_countact_time = np.array(all_around_countact_time)
all_physical_t.append(len(contact_t) * time_tol*2)
all_pre_chase_time_ratio = all_pre_chase_time / (3*60*60)
all_chase_time_ratio = all_chase_time / (3*60*60)
all_end_chase_time_ratio = all_end_chase_time / (3*60*60)
all_after_chase_time_ratio = all_after_chase_time / (3*60*60)
all_around_countact_time_ratio = all_around_countact_time / (3*60*60)
all_physical_t = np.array(all_physical_t)
all_chasing_t = np.array(all_chasing_t)
all_chase_off_t = np.array(all_chase_off_t)
all_pre_chase_event_ratio = np.array(list(map(lambda x: np.sum(x)/len(x), all_pre_chase_event_mask)))
all_chase_event_ratio = np.array(list(map(lambda x: np.sum(x)/len(x), all_chase_event_mask)))
all_end_chase_event_ratio = np.array(list(map(lambda x: np.sum(x)/len(x), all_end_chase_event_mask)))
all_after_chase_event_ratio = np.array(list(map(lambda x: np.sum(x)/len(x), all_after_chase_event_mask)))
all_around_countact_event_ratio = np.array(list(map(lambda x: np.sum(x)/len(x), all_around_countact_event_mask)))
physical_t_ratio = all_physical_t / (3*60*60)
chase_t_ratio = all_chasing_t / (3*60*60)
chase_off_t_ratio = all_chase_off_t / (3*60*60)
# all_physical_t = np.array(all_physical_t)
# all_chasing_t = np.array(all_chasing_t)
# all_chase_off_t = np.array(all_chase_off_t)
contact_chirp_ratio = np.array(list(map(lambda x: np.sum(x)/len(x), all_contact_chirp_mask)))
chase_chirp_ratio = np.array(list(map(lambda x: np.sum(x)/len(x), all_chase_chirp_mask)))
chase_off_chirp_ratio = np.array(list(map(lambda x: np.sum(x)/len(x), all_chase_off_chirp_mask)))
# physical_t_ratio = all_physical_t / (3*60*60)
# chase_t_ratio = all_chasing_t / (3*60*60)
# chase_off_t_ratio = all_chase_off_t / (3*60*60)
# contact_chirp_ratio = np.array(list(map(lambda x: np.sum(x)/len(x), all_contact_chirp_mask)))
# chase_chirp_ratio = np.array(list(map(lambda x: np.sum(x)/len(x), all_chase_chirp_mask)))
# chase_off_chirp_ratio = np.array(list(map(lambda x: np.sum(x)/len(x), all_chase_off_chirp_mask)))
###########################################################################################################
fig = plt.figure(figsize=(20/2.54, 12/2.54))
gs = gridspec.GridSpec(1, 1, left=0.1, bottom=0.1, right=0.95, top=0.95)
ax = fig.add_subplot(gs[0, 0])
ax.boxplot([chase_chirp_ratio/chase_t_ratio,
contact_chirp_ratio/physical_t_ratio,
chase_off_chirp_ratio/chase_off_t_ratio], positions=np.arange(3), sym='')
ax.plot(np.arange(5)-1, np.ones(5), linestyle='dotted', lw=2, color='k')
ax.set_xlim(-0.5, 2.5)
# ax.boxplot([chase_chirp_ratio/chase_t_ratio,
# contact_chirp_ratio/physical_t_ratio,
# chase_off_chirp_ratio/chase_off_t_ratio], positions=np.arange(3), sym='')
ax.boxplot([all_pre_chase_event_ratio/all_pre_chase_time_ratio,
all_chase_event_ratio/all_chase_time_ratio,
all_end_chase_event_ratio/all_end_chase_time_ratio,
all_after_chase_event_ratio/all_after_chase_time_ratio,
all_around_countact_event_ratio/all_around_countact_time_ratio], positions=np.arange(5), sym='')
ax.plot(np.arange(7)-1, np.ones(7), linestyle='dotted', lw=2, color='k')
ax.set_xlim(-0.5, 4.5)
ax.set_ylabel(r'rel. chrips$_{event}$ / rel. time$_{event}$', fontsize=12)
ax.set_xticks(np.arange(3))
ax.set_xticklabels(['chasing', 'contact', r'chase$_{off}$'])
ax.set_xticks(np.arange(5))
ax.set_xticklabels([r'chase$_{before}$', r'chasing', r'chase$_{end}$', r'chase$_{after}$', 'contact'])
ax.tick_params(labelsize=10)
plt.show()
flat_contact_chirp_mask = np.hstack(all_contact_chirp_mask)
flat_chase_chirp_mask = np.hstack(all_chase_chirp_mask)
flat_chase_off_chirp_mask = np.hstack(all_chase_off_chirp_mask)
###############################################
flat_pre_chase_event_mask = np.hstack(all_pre_chase_event_mask)
flat_chase_event_mask = np.hstack(all_chase_event_mask)
flat_end_chase_event_mask = np.hstack(all_end_chase_event_mask)
flat_after_chase_event_mask = np.hstack(all_after_chase_event_mask)
flat_around_countact_event_mask = np.hstack(all_around_countact_event_mask)
flat_pre_chase_event_mask[flat_around_countact_event_mask == 1] = 0
flat_chase_event_mask[flat_around_countact_event_mask == 1] = 0
flat_end_chase_event_mask[flat_around_countact_event_mask == 1] = 0
flat_after_chase_event_mask[flat_around_countact_event_mask == 1] = 0
# flat_contact_chirp_mask = np.hstack(all_contact_chirp_mask)
# flat_chase_chirp_mask = np.hstack(all_chase_chirp_mask)
# flat_chase_off_chirp_mask = np.hstack(all_chase_off_chirp_mask)
# flat_chase_chirp_mask[flat_contact_chirp_mask == 1] = 0
# flat_chase_off_chirp_mask[flat_contact_chirp_mask == 1] = 0
# flat_chase_chirp_mask[flat_chase_off_chirp_mask == 1] = 0
event_context_values = [np.sum(flat_pre_chase_event_mask) / len(flat_pre_chase_event_mask),
np.sum(flat_chase_event_mask) / len(flat_chase_event_mask),
np.sum(flat_end_chase_event_mask) / len(flat_end_chase_event_mask),
np.sum(flat_after_chase_event_mask) / len(flat_after_chase_event_mask),
np.sum(flat_around_countact_event_mask) / len(flat_around_countact_event_mask)]
flat_chase_chirp_mask[flat_contact_chirp_mask == 1] = 0
flat_chase_off_chirp_mask[flat_contact_chirp_mask == 1] = 0
flat_chase_chirp_mask[flat_chase_off_chirp_mask == 1] = 0
event_context_values.append(1 - np.sum(event_context_values))
chirps_context_values = [np.sum(flat_contact_chirp_mask) / len(flat_contact_chirp_mask),
np.sum(flat_chase_chirp_mask) / len(flat_chase_chirp_mask),
np.sum(flat_chase_off_chirp_mask) / len(flat_chase_off_chirp_mask)]
chirps_context_values.append(1 - np.sum(chirps_context_values))
time_context_values = [np.sum(all_pre_chase_time), np.sum(all_chase_time), np.sum(all_end_chase_time),
np.sum(all_after_chase_time), np.sum(all_around_countact_time)]
time_context_values = [np.sum(all_physical_t), np.sum(all_chasing_t), np.sum(all_chase_off_t)]
time_context_values.append(len(all_chasing_t) * 3*60*60 - np.sum(time_context_values))
time_context_values.append(len(all_pre_chase_time) * 3*60*60 - np.sum(time_context_values))
time_context_values /= np.sum(time_context_values)
fig, ax = plt.subplots(figsize=(12/2.54,12/2.54))
size = 0.3
outer_colors = ['tab:red', 'tab:orange', 'tab:green', 'tab:grey']
ax.pie(chirps_context_values, radius=1, colors=outer_colors,
outer_colors = ['tab:red', 'tab:orange', 'yellow', 'tab:green', 'k', 'tab:grey']
ax.pie(event_context_values, radius=1, colors=outer_colors,
wedgeprops=dict(width=size, edgecolor='w'), startangle=90, center=(0, .5))
ax.pie(time_context_values, radius=1-size, colors=outer_colors,
wedgeprops=dict(width=size, edgecolor='w', alpha=.6), startangle=90, center=(0, .5))
ax.set_title(r'chirp$_{lose}$ context')
legend_elements = [Patch(facecolor='tab:red', edgecolor='w', label='%.1f' % (chirps_context_values[0] * 100) + '%'),
Patch(facecolor='tab:orange', edgecolor='w', label='%.1f' % (chirps_context_values[1] * 100) + '%'),
Patch(facecolor='tab:green', edgecolor='w', label='%.1f' % (chirps_context_values[2] * 100) + '%'),
ax.set_title(r'event context')
legend_elements = [Patch(facecolor='tab:red', edgecolor='w', label='%.1f' % (event_context_values[0] * 100) + '%'),
Patch(facecolor='tab:orange', edgecolor='w', label='%.1f' % (event_context_values[1] * 100) + '%'),
Patch(facecolor='yellow', edgecolor='w', label='%.1f' % (event_context_values[2] * 100) + '%'),
Patch(facecolor='tab:green', edgecolor='w', label='%.1f' % (event_context_values[3] * 100) + '%'),
Patch(facecolor='k', edgecolor='w', label='%.1f' % (event_context_values[4] * 100) + '%'),
Patch(facecolor='tab:red', alpha=0.6, edgecolor='w', label='%.1f' % (time_context_values[0] * 100) + '%'),
Patch(facecolor='tab:orange', alpha=0.6, edgecolor='w', label='%.1f' % (time_context_values[1] * 100) + '%'),
Patch(facecolor='tab:green', alpha=0.6, edgecolor='w', label='%.1f' % (time_context_values[2] * 100) + '%')]
Patch(facecolor='yellow', alpha=0.6, edgecolor='w', label='%.1f' % (time_context_values[2] * 100) + '%'),
Patch(facecolor='tab:green', alpha=0.6, edgecolor='w', label='%.1f' % (time_context_values[3] * 100) + '%'),
Patch(facecolor='k', alpha=0.6, edgecolor='w', label='%.1f' % (time_context_values[4] * 100) + '%')]
# ax.text(-0.65, -1.4, 'chirps', fontsize=10, va='center', ha='center')
# ax.text(0.75, -1.4, 'time', fontsize=10, va='center', ha='center')

View File

@ -2,6 +2,7 @@ import os
import sys
import argparse
import time
import itertools
import numpy as np
try:
@ -15,6 +16,8 @@ import pandas as pd
from IPython import embed
from tqdm import tqdm
female_color, male_color = '#e74c3c', '#3498db'
def load_and_converete_boris_events(trial_path, recording, sr):
def converte_video_frames_to_grid_idx(event_frames, led_frames, led_idx):
@ -165,15 +168,6 @@ def jackknife_kde(event_dt, conv_t, repetitions = 2000, max_mem_use_GB = 2, jack
event_dt_jk = event_dt_rep[cp.arange(event_dt_rep.shape[0])[:, None], idx]
event_dt_jk_full = cp.tile(event_dt_jk, (len(conv_tt), 1, 1))
# event_dt_perm = cp.tile(select_event_dt, (len(conv_tt), n_chuck, 1))
# jitter = cp.random.uniform(-max_jitter, max_jitter, size=(event_dt_perm.shape[1], event_dt_perm.shape[2]))
# jitter = cp.expand_dims(jitter, axis=0)
# event_dt_perm += jitter
# conv_t_perm = cp.tile(conv_tt, (1, repetitions, len(event_dt)))
gauss_3d = cp.exp(-((conv_tt - event_dt_jk_full) / kernal_w) ** 2 / 2) * kernal_h
kde_3d = cp.sum(gauss_3d, axis = 2).transpose()
@ -229,6 +223,20 @@ def jackknife_kde(event_dt, conv_t, repetitions = 2000, max_mem_use_GB = 2, jack
return chunk_collector
def single_kde(event_dt, conv_t, kernal_w = 1, kernal_h = 0.2):
single_kdes = cp.zeros((len(event_dt), len(conv_t)))
for enu, e_dt in enumerate(event_dt):
Ce_dt = e_dt[np.abs(e_dt) <= float(cp.max(conv_t)) * 2]
conv_tt = cp.reshape(conv_t, (len(conv_t), 1))
Ce_dt_tile = cp.tile(Ce_dt, (len(conv_tt), 1))
gauss_3d = cp.exp(-((conv_tt - Ce_dt_tile) / kernal_w) ** 2 / 2) * kernal_h
single_kdes[enu] = cp.sum(gauss_3d, axis=1)
return cp.asnumpy(single_kdes)
def main(base_path):
trial_summary = pd.read_csv('trial_summary.csv', index_col=0)
@ -256,6 +264,9 @@ def main(base_path):
win_rises_centered_on_lose_chirps = []
win_rises_count = []
sex_win = []
sex_lose = []
for index, trial in tqdm(trial_summary.iterrows()):
trial_path = os.path.join(base_path, trial['recording'])
@ -279,6 +290,7 @@ def main(base_path):
### communication
if not os.path.exists(os.path.join(trial_path, 'chirp_times_cnn.npy')):
continue
chirp_t = np.load(os.path.join(trial_path, 'chirp_times_cnn.npy'))
chirp_ids = np.load(os.path.join(trial_path, 'chirp_ids_cnn.npy'))
chirp_times = [chirp_t[chirp_ids == trial['win_ID']], chirp_t[chirp_ids == trial['lose_ID']]]
@ -315,13 +327,18 @@ def main(base_path):
win_rises_centered_on_lose_chirps.append(event_centered_times(chirp_times[1], rise_times[0]))
win_rises_count.append(len(rise_times[0]))
sex_win.append(trial['sex_win'])
sex_lose.append(trial['sex_lose'])
sex_win = np.array(sex_win)
sex_lose = np.array(sex_lose)
# embed()
# quit()
max_dt = 30
conv_t_dt = 0.5
jack_pct = 0.9
conv_t = cp.arange(-max_dt, max_dt, conv_t_dt)
conv_t = cp.arange(-max_dt, max_dt+conv_t_dt, conv_t_dt)
conv_t_numpy = cp.asnumpy(conv_t)
# kde_array = kde(np.hstack(lose_chrips_centered_on_ag_off_t), conv_t, kernal_w = 1, kernal_h = 1)
for centered_times, event_counts, title in \
[[lose_chrips_centered_on_ag_off_t, lose_chirp_count, r'chirp$_{lose}$ on chase$_{off}$'],
@ -344,23 +361,96 @@ def main(base_path):
[win_rises_centered_on_contact_t, win_rises_count, r'rise$_{win}$ on contact'],
[win_rises_centered_on_lose_chirps, win_rises_count, r'rise$_{win}$ on chirp$_{lose}$']]:
if not os.path.exists(os.path.join(os.path.split(__file__)[0], 'figures')):
os.makedirs(os.path.join(os.path.split(__file__)[0], 'figures'))
save_str = title.replace('$', '').replace('{', '').replace('}', '').replace(' ', '_')
###########################################################################################################
### by pairing ###
centered_times_pairing = []
for sex_w, sex_l in itertools.product(['m', 'f'], repeat=2):
centered_times_pairing.append([])
for i in range(len(centered_times)):
if sex_w == sex_win[i] and sex_l == sex_lose[i]:
centered_times_pairing[-1].append(centered_times[i])
event_counts_pairings = [np.sum(np.array(event_counts)[(sex_win == 'm') & (sex_lose == 'm')]),
np.sum(np.array(event_counts)[(sex_win == 'm') & (sex_lose == 'f')]),
np.sum(np.array(event_counts)[(sex_win == 'f') & (sex_lose == 'm')]),
np.sum(np.array(event_counts)[(sex_win == 'f') & (sex_lose == 'f')])]
color = [male_color, female_color, male_color, female_color]
linestyle = ['-', '--', '--', '-']
perm_p_pairings = []
jk_p_pairings = []
fig = plt.figure(figsize=(20/2.54, 12/2.54))
gs = gridspec.GridSpec(2, 2, left=0.1, bottom=0.1, right=0.95, top=0.9)
ax = []
ax.append(fig.add_subplot(gs[0, 0]))
ax.append(fig.add_subplot(gs[0, 1], sharey=ax[0]))
ax.append(fig.add_subplot(gs[1, 0], sharex=ax[0]))
ax.append(fig.add_subplot(gs[1, 1], sharey=ax[2], sharex=ax[1]))
for enu, (centered_times_p, event_count_p) in enumerate(zip(centered_times_pairing, event_counts_pairings)):
boot_kde = permutation_kde(np.hstack(centered_times_p), conv_t, kernal_w=1, kernal_h=1)
jk_kde = jackknife_kde(np.hstack(centered_times_p), conv_t, jack_pct=jack_pct, kernal_w=1, kernal_h=1)
perm_p1, perm_p50, perm_p99 = np.percentile(boot_kde, (1, 50, 99), axis=0)
perm_p_pairings.append([perm_p1, perm_p50, perm_p99])
jk_p1, jk_p50, jk_p99 = np.percentile(jk_kde, (1, 50, 99), axis=0)
jk_p_pairings.append([jk_p1, jk_p50, jk_p99])
ax[enu].fill_between(conv_t_numpy, perm_p1 / event_count_p, perm_p99 / event_count_p, color='cornflowerblue', alpha=.8)
ax[enu].plot(conv_t_numpy, perm_p50 / event_count_p, color='dodgerblue', alpha=1, lw=3)
ax[enu].fill_between(conv_t_numpy, jk_p1 / event_count_p / jack_pct, jk_p99 / event_count_p / jack_pct, color=color[enu], alpha=.8)
ax[enu].plot(conv_t_numpy, jk_p50 / event_count_p / jack_pct, color=color[enu], alpha=1, lw=3, linestyle=linestyle[enu])
ax_m = ax[enu].twinx()
for enu2, centered_events in enumerate(centered_times_p):
Cevents = centered_events[np.abs(centered_events) <= max_dt]
ax_m.plot(Cevents, np.ones(len(Cevents)) * enu2, '|', markersize=8, color='k', alpha=.1)
ax_m.set_yticks([])
ax[enu].set_xlim(-max_dt, max_dt)
ax[enu].tick_params(labelsize=10)
plt.setp(ax[1].get_yticklabels(), visible=False)
plt.setp(ax[3].get_yticklabels(), visible=False)
plt.setp(ax[0].get_xticklabels(), visible=False)
plt.setp(ax[1].get_xticklabels(), visible=False)
ax[2].set_xlabel('time [s]', fontsize=12)
ax[3].set_xlabel('time [s]', fontsize=12)
ax[0].set_ylabel('event rate [Hz]', fontsize=12)
ax[2].set_ylabel('event rate [Hz]', fontsize=12)
fig.suptitle(title)
plt.savefig(os.path.join(os.path.split(__file__)[0], 'figures', f'{save_str}_by_sexes.png'), dpi=300)
plt.close()
###########################################################################################################
### all pairings ###
boot_kde = permutation_kde(np.hstack(centered_times), conv_t, kernal_w=1, kernal_h=1)
jk_kde = jackknife_kde(np.hstack(centered_times), conv_t, jack_pct=jack_pct, kernal_w=1, kernal_h=1)
perm_p1, perm_p50, perm_p99 = np.percentile(boot_kde, (1, 50, 99), axis=0)
jk_p1, jk_p50, jk_p99 = np.percentile(jk_kde, (1, 50, 99), axis=0)
conv_t_numpy = cp.asnumpy(conv_t)
fig = plt.figure(figsize=(20/2.54, 12/2.54))
gs = gridspec.GridSpec(1, 1, left=0.1, bottom=0.1, right=0.95, top=0.95)
ax = fig.add_subplot(gs[0, 0])
ax.fill_between(conv_t_numpy, perm_p1/np.sum(event_counts), perm_p99/np.sum(event_counts), color='cornflowerblue', alpha=.8)
ax.plot(conv_t_numpy, perm_p50/np.sum(event_counts), color='dodgerblue', alpha=1, lw=3)
# ax.fill_between(conv_t_numpy, perm_p1/np.sum(event_counts), perm_p99/np.sum(event_counts), color='cornflowerblue', alpha=.8)
# ax.plot(conv_t_numpy, perm_p50/np.sum(event_counts), color='dodgerblue', alpha=1, lw=3)
ax.fill_between(conv_t_numpy, perm_p1/len(np.hstack(centered_times)), perm_p99/len(np.hstack(centered_times)), color='cornflowerblue', alpha=.8)
ax.plot(conv_t_numpy, perm_p50/len(np.hstack(centered_times)), color='dodgerblue', alpha=1, lw=3)
ax.fill_between(conv_t_numpy, jk_p1/np.sum(event_counts)/jack_pct, jk_p99/np.sum(event_counts)/jack_pct, color='tab:red', alpha=.8)
ax.plot(conv_t_numpy, jk_p50/np.sum(event_counts)/jack_pct, color='firebrick', alpha=1, lw=3)
# ax.fill_between(conv_t_numpy, jk_p1/np.sum(event_counts)/jack_pct, jk_p99/np.sum(event_counts)/jack_pct, color='tab:red', alpha=.8)
# ax.plot(conv_t_numpy, jk_p50/np.sum(event_counts)/jack_pct, color='firebrick', alpha=1, lw=3)
ax.fill_between(conv_t_numpy, jk_p1/len(np.hstack(centered_times))/jack_pct, jk_p99/len(np.hstack(centered_times))/jack_pct, color='tab:red', alpha=.8)
ax.plot(conv_t_numpy, jk_p50/len(np.hstack(centered_times))/jack_pct, color='firebrick', alpha=1, lw=3)
ax_m = ax.twinx()
for enu, centered_events in enumerate(centered_times):
@ -374,9 +464,6 @@ def main(base_path):
ax.set_xlim(-max_dt, max_dt)
ax.tick_params(labelsize=10)
if not os.path.exists(os.path.join(os.path.split(__file__)[0], 'figures')):
os.makedirs(os.path.join(os.path.split(__file__)[0], 'figures'))
save_str = title.replace('$', '').replace('{', '').replace('}', '').replace(' ', '_')
plt.savefig(os.path.join(os.path.split(__file__)[0], 'figures', f'{save_str}.png'), dpi=300)
plt.close()