markov models and iei interval analysis completed
This commit is contained in:
parent
3a4ece9902
commit
a038c2f696
@ -13,7 +13,6 @@ from event_time_correlations import load_and_converete_boris_events, kde, gauss
|
|||||||
female_color, male_color = '#e74c3c', '#3498db'
|
female_color, male_color = '#e74c3c', '#3498db'
|
||||||
|
|
||||||
def iei_analysis(event_times, win_sex, lose_sex, kernal_w, title=''):
|
def iei_analysis(event_times, win_sex, lose_sex, kernal_w, title=''):
|
||||||
# ToDo: finish this !!!
|
|
||||||
iei = []
|
iei = []
|
||||||
weighted_mean_iei = []
|
weighted_mean_iei = []
|
||||||
median_iei = []
|
median_iei = []
|
||||||
@ -32,12 +31,10 @@ def iei_analysis(event_times, win_sex, lose_sex, kernal_w, title=''):
|
|||||||
median_iei = np.array(median_iei)
|
median_iei = np.array(median_iei)
|
||||||
|
|
||||||
fig = plt.figure(figsize=(20 / 2.54, 12 / 2.54))
|
fig = plt.figure(figsize=(20 / 2.54, 12 / 2.54))
|
||||||
gs = gridspec.GridSpec(2, 2, left=0.1, bottom=0.1, right=0.95, top=0.9)
|
gs = gridspec.GridSpec(1, 2, left=0.1, bottom=0.2, right=0.95, top=0.9, width_ratios=[5, 1], wspace=.3)
|
||||||
ax = []
|
ax = []
|
||||||
ax.append(fig.add_subplot(gs[0, 0]))
|
ax.append(fig.add_subplot(gs[0, 0]))
|
||||||
ax.append(fig.add_subplot(gs[0, 1], sharey=ax[0], sharex=ax[0]))
|
ax.append(fig.add_subplot(gs[0, 1]))
|
||||||
ax.append(fig.add_subplot(gs[1, 0], sharey=ax[0], sharex=ax[0]))
|
|
||||||
ax.append(fig.add_subplot(gs[1, 1], sharey=ax[0], sharex=ax[0]))
|
|
||||||
|
|
||||||
for i in range(len(iei)):
|
for i in range(len(iei)):
|
||||||
if win_sex[i] == 'm':
|
if win_sex[i] == 'm':
|
||||||
@ -59,27 +56,29 @@ def iei_analysis(event_times, win_sex, lose_sex, kernal_w, title=''):
|
|||||||
kde_array = kde(iei[i], conv_y, kernal_w=kernal_w, kernal_h=1)
|
kde_array = kde(iei[i], conv_y, kernal_w=kernal_w, kernal_h=1)
|
||||||
|
|
||||||
# kde_array /= np.sum(kde_array)
|
# kde_array /= np.sum(kde_array)
|
||||||
ax[sp].plot(conv_y, kde_array, zorder=2, color=color, linestyle=linestyle, lw=2)
|
ax[0].plot(conv_y, kde_array, zorder=2, color=color, linestyle=linestyle, lw=2)
|
||||||
|
|
||||||
# ax_m = ax[0].twinx()
|
|
||||||
# ax_m.boxplot([weighted_mean_iei[(win_sex == 'm') & (win_sex == 'm') & ~np.isnan(weighted_mean_iei)],
|
ax[1].boxplot([weighted_mean_iei[~np.isnan(weighted_mean_iei)],
|
||||||
# median_iei[(win_sex == 'm') & (win_sex == 'm') & ~np.isnan(median_iei)]], sym='', vert=False)
|
median_iei[~np.isnan(median_iei)]], positions=[0, 1], sym='', widths=0.5)
|
||||||
|
|
||||||
ax[0].set_xlim(conv_y[0], conv_y[-1])
|
ax[0].set_xlim(conv_y[0], conv_y[-1])
|
||||||
ax[0].set_ylabel('KDE', fontsize=12)
|
ax[0].set_ylabel('KDE', fontsize=12)
|
||||||
ax[2].set_ylabel('KDE', fontsize=12)
|
ax[0].set_xlabel('inter event interval [s]', fontsize=12)
|
||||||
ax[2].set_xlabel('time [s]', fontsize=12)
|
|
||||||
ax[3].set_xlabel('time [s]', fontsize=12)
|
|
||||||
fig.suptitle(title, fontsize=12)
|
fig.suptitle(title, fontsize=12)
|
||||||
|
|
||||||
for a in ax:
|
for a in ax:
|
||||||
a.tick_params(labelsize=10)
|
a.tick_params(labelsize=10)
|
||||||
|
|
||||||
plt.setp(ax[1].get_yticklabels(), visible=False)
|
ax[1].set_xticks(np.arange(2))
|
||||||
plt.setp(ax[3].get_yticklabels(), visible=False)
|
ax[1].set_xticklabels([r'weighted$_{time}$', 'median'], rotation=45)
|
||||||
|
ax[1].set_ylabel('inter event interval [s]', fontsize=12)
|
||||||
plt.setp(ax[0].get_xticklabels(), visible=False)
|
# ax[0]
|
||||||
plt.setp(ax[1].get_xticklabels(), visible=False)
|
# plt.setp(ax[1].get_yticklabels(), visible=False)
|
||||||
|
# plt.setp(ax[3].get_yticklabels(), visible=False)
|
||||||
|
#
|
||||||
|
# plt.setp(ax[0].get_xticklabels(), visible=False)
|
||||||
|
# plt.setp(ax[1].get_xticklabels(), visible=False)
|
||||||
|
|
||||||
plt.savefig(os.path.join(os.path.split(__file__)[0], 'figures', 'event_meta', f'{title}_iei.png'), dpi=300)
|
plt.savefig(os.path.join(os.path.split(__file__)[0], 'figures', 'event_meta', f'{title}_iei.png'), dpi=300)
|
||||||
plt.close()
|
plt.close()
|
||||||
|
Loading…
Reference in New Issue
Block a user