diff --git a/code/event_videos.py b/code/event_videos.py
index d89815e..86885a6 100644
--- a/code/event_videos.py
+++ b/code/event_videos.py
@@ -1,6 +1,7 @@
 import numpy as np
 import matplotlib.pyplot as plt
 import matplotlib.gridspec as gridspec
+# from matplotlib.patches import patch
 import os
 import sys
 import cv2
@@ -9,6 +10,8 @@ import argparse
 from IPython import embed
 from tqdm import tqdm
 from thunderfish.powerspectrum import decibel
+import pathlib
+import pandas as pd
 
 def main(folder, dt):
     video_path = glob.glob(os.path.join(folder, '2022*.mp4'))[0]
@@ -16,136 +19,317 @@ def main(folder, dt):
     if not os.path.exists(create_video_path):
         os.mkdir(create_video_path)
 
-    # embed()
-    # quit()
+
     video = cv2.VideoCapture(video_path) #  was 'cap'
 
     # fish_freqs = np.load(os.path.join(folder, 'analysis', 'fish_freq_interp.npy'))
     fish_freqs = np.load(os.path.join(folder, 'analysis', 'fish_freq.npy'))
-    rise_idx = np.load(os.path.join(folder, 'analysis', 'rise_idx.npy'))
+
+    # rise_idx = np.load(os.path.join(folder, 'analysis', 'rise_idx.npy'))
+    meta = pd.read_csv(pathlib.Path(folder).parent / 'meta.csv', sep=',', encoding='utf-7', index_col=0)
+    filename = pathlib.Path(folder).name
+    win_id = meta.loc[filename, 'Win_ID']
+    lose_id = meta.loc[filename, 'Lose_ID']
+    rise_bboxes = pd.read_csv(pathlib.Path(folder) / "risedetector_bboxes.csv", sep=',')
+    chirp_bboxes = pd.read_csv(pathlib.Path(folder) / "chirpdetector_bboxes.csv", sep=',')
+    rise_times = rise_bboxes['t0'][rise_bboxes['id'] == lose_id].to_numpy()
+    chirp_times = chirp_bboxes['chirp_times'][(chirp_bboxes['assigned_track'] == lose_id)].to_numpy()
+
+    # ToDo: rise and chipt times to times idxs!!!
+    # embed()
+    # quit()
+
     frame_times = np.load(os.path.join(folder, 'analysis', 'frame_times.npy'))
-    times = np.load(os.path.join(folder, 'times.npy'))
 
+    times = np.load(os.path.join(folder, 'times.npy'))
     fill_freqs = np.load(os.path.join(folder, 'fill_freqs.npy'))
     fill_times = np.load(os.path.join(folder, 'fill_times.npy'))
     fill_spec_shape = np.load(os.path.join(folder, 'fill_spec_shape.npy'))
     fill_spec = np.memmap(os.path.join(folder, 'fill_spec.npy'), dtype='float', mode='r',
                                shape=(fill_spec_shape[0], fill_spec_shape[1]), order='F')
-    #######################################
-    # embed()
-    # quit()
-    for fish_nr in np.arange(2)[::-1]:
-
-        for idx_oi in tqdm(np.array(rise_idx[fish_nr][~np.isnan(rise_idx[fish_nr])], dtype=int)):
-            time_oi = times[idx_oi]
-
-            HH = int((time_oi / 3600) // 1)
-            MM = int((time_oi - HH * 3600) // 60)
-            SS =  int(time_oi - HH * 3600 - MM * 60)
-
-            frames_oi = np.arange(len(frame_times))[np.abs(frame_times - time_oi) <= dt]
-            idxs_oi = np.arange(len(times))[np.abs(times - time_oi) <= dt*3]
-
-            fig = plt.figure(figsize=(16*2/2.54, 9*2/2.54))
-            gs = gridspec.GridSpec(6, 2, left=0.075, bottom=0.05, right=1, top=0.95, width_ratios=(1.5, 3), hspace=.3, wspace=0.05)
-            ax = []
-            ax.append(fig.add_subplot(gs[:, 1]))
-            ax.append(fig.add_subplot(gs[1:3, 0]))
-            ax.append(fig.add_subplot(gs[3:5, 0]))
-
-
-            y00, y01 = np.nanmin(fish_freqs[0][idxs_oi]), np.nanmax(fish_freqs[0][idxs_oi])
-            y10, y11 = np.nanmin(fish_freqs[1][idxs_oi]), np.nanmax(fish_freqs[1][idxs_oi])
-
-            if y01 - y00 < 20:
-                y01 = y00 + 20
-            if y11 - y10 < 20:
-                y11 = y10 + 20
-            freq_span1 = (y01) - (y00)
-            freq_span2 = (y11) - (y10)
-
-            yspan = freq_span1 if freq_span1 > freq_span2 else freq_span2
-
-            ax[1].plot(times[idxs_oi] - time_oi, fish_freqs[0][idxs_oi], marker='.', markersize=4, color='darkorange', lw=2, alpha=0.4)
-            ax[2].plot(times[idxs_oi] - time_oi, fish_freqs[1][idxs_oi], marker='.', markersize=4,color='forestgreen', lw=2, alpha=0.4)
-            ax[1].plot([0, 0], [y00 - yspan * 0.2, y00 + yspan * 1.3], '--', color='k')
-            ax[2].plot([0, 0], [y10 - yspan * 0.2, y10 + yspan * 1.3], '--', color='k')
-
-            ax[1].set_xticks([-30, -15, 0, 15, 30])
-            ax[2].set_xticks([-30, -15, 0, 15, 30])
-            plt.setp(ax[1].get_xticklabels(), visible=False)
-
-            # spectrograms
-            f_mask1 = np.arange(len(fill_freqs))[(fill_freqs >= y00 - yspan * 0.2) & (fill_freqs <= y00 + yspan * 1.3)]
-            f_mask2 = np.arange(len(fill_freqs))[(fill_freqs >= y10 - yspan * 0.2) & (fill_freqs <= y10 + yspan * 1.3)]
-            t_mask = np.arange(len(fill_times))[(fill_times >= time_oi-dt*4) & (fill_times <= time_oi+dt*4)]
-
-            ax[1].imshow(decibel(fill_spec[f_mask1[0]:f_mask1[-1], t_mask[0]:t_mask[-1]][::-1]),
-                                              extent=[-dt*4, dt*4, y00 - yspan * 0.2, y00 + yspan * 1.3],
-                                              aspect='auto',vmin = -100, vmax = -50, alpha=0.7, cmap='jet', interpolation='gaussian')
-            ax[2].imshow(decibel(fill_spec[f_mask2[0]:f_mask2[-1], t_mask[0]:t_mask[-1]][::-1]),
-                                              extent=[-dt*4, dt*4, y10 - yspan * 0.2, y10 + yspan * 1.3],
-                                              aspect='auto',vmin = -100, vmax = -50, alpha=0.7, cmap='jet', interpolation='gaussian')
-
-            ax[1].set_ylim(y00 - yspan * 0.1, y00 + yspan * 1.2)
-            ax[1].set_xlim(-dt*3, dt*3)
-            ax[2].set_ylim(y10 - yspan * 0.1, y10 + yspan * 1.2)
-            ax[2].set_xlim(-dt*3, dt*3)
-
-            ax[0].set_xticks([])
-            ax[0].set_yticks([])
-
-            ax[1].tick_params(labelsize=12)
-            ax[2].tick_params(labelsize=12)
-
-            ax[2].set_xlabel('time [s]', fontsize=14)
-            fig.text(0.02, 0.5, 'frequency [Hz]', fontsize=14, va='center', rotation='vertical')
-
-            # plt.ion()
-            for i in tqdm(np.arange(len(frames_oi))):
-                # break
-                video.set(cv2.CAP_PROP_POS_FRAMES, int(frames_oi[i]))
-                ret, frame = video.read()
-
-                if i == 250:
-                    dot, = ax[0].plot(0.05, 0.95, 'o', color='firebrick', transform = ax[0].transAxes, markersize=20)
-                if i == 280:
-                    dot.remove()
-
-                if i == 0:
-                    img = ax[0].imshow(frame)
-                    line1, = ax[1].plot([frame_times[frames_oi[i]] - time_oi, frame_times[frames_oi[i]] - time_oi],
-                                       [y00 - yspan * 0.15, y00 + yspan * 1.3],
-                                       color='k', lw=1)
-                    line2, = ax[2].plot([frame_times[frames_oi[i]] - time_oi, frame_times[frames_oi[i]] - time_oi],
-                                       [y10 - yspan * 0.15, y10 + yspan * 1.3],
-                                       color='k', lw=1)
-                else:
-                    img.set_data(frame)
-                    line1.set_data([frame_times[frames_oi[i]] - time_oi, frame_times[frames_oi[i]] - time_oi],
-                                  [y00 - yspan * 0.15, y00 + yspan * 1.3])
-                    line2.set_data([frame_times[frames_oi[i]] - time_oi, frame_times[frames_oi[i]] - time_oi],
-                                  [y10 - yspan * 0.15, y10 + yspan * 1.3])
-
-                label = (os.path.join(create_video_path, 'frame%4.f.jpg' % len(glob.glob(os.path.join(create_video_path, '*.jpg'))))).replace(' ', '0')
-                plt.savefig(label, dpi=300)
-                # plt.pause(0.001)
+
+    for rise_time in rise_bboxes['t0'][rise_bboxes['id'] == lose_id].to_numpy():
+        relevant_chirps = chirp_times[((chirp_times - rise_time) > 0 ) &
+                                      ((chirp_times - rise_time) < dt * 3)]
+        if len(relevant_chirps) == 0:
+            continue
+
+        rel_chirp_time = relevant_chirps - rise_time
+
+        HH = int((rise_time / 3600) // 1)
+        MM = int((rise_time - HH * 3600) // 60)
+        SS = int(rise_time - HH * 3600 - MM * 60)
+
+        frames_oi = np.arange(len(frame_times))[((frame_times - rise_time) >= -dt) & ((frame_times - rise_time) <= 3*dt)]
+        idxs_oi = np.arange(len(times))[((times - rise_time) >= -dt) & ((times - rise_time) <= 3*dt)]
+
+        fig = plt.figure(figsize=(16 * 2 / 2.54, 9 * 2 / 2.54))
+        fig.patch.set_facecolor('black')
+        gs = gridspec.GridSpec(6, 2, left=0.075, bottom=0.05, right=.99, top=0.95, width_ratios=(1.5, 3), hspace=.3,
+                               wspace=0.05)
+        ax = []
+        ax.append(fig.add_subplot(gs[:, 1]))
+        ax.append(fig.add_subplot(gs[1:3, 0]))
+        ax.append(fig.add_subplot(gs[3:5, 0]))
+
+        y00, y01 = np.nanmin(fish_freqs[0][idxs_oi]), np.nanmax(fish_freqs[0][idxs_oi])
+        y10, y11 = np.nanmin(fish_freqs[1][idxs_oi]), np.nanmax(fish_freqs[1][idxs_oi])
+
+        if y01 - y00 < 20:
+            y01 = y00 + 20
+        if y11 - y10 < 20:
+            y11 = y10 + 20
+        freq_span1 = (y01) - (y00)
+        freq_span2 = (y11) - (y10)
+        yspan = freq_span1 if freq_span1 > freq_span2 else freq_span2
+
+        ax[1].plot(times[idxs_oi] - rise_time, fish_freqs[0][idxs_oi], marker='.', markersize=4, color='darkorange', lw=2,
+                   alpha=0.4)
+        ax[2].plot(times[idxs_oi] - rise_time, fish_freqs[1][idxs_oi], marker='.', markersize=4, color='forestgreen',
+                   lw=2, alpha=0.4)
+        ax[1].plot([0, 0], [y00 - yspan * 0.2, y00 + yspan * 1.3], '--', color='white')
+        ax[2].plot([0, 0], [y10 - yspan * 0.2, y10 + yspan * 1.3], '--', color='white')
+
+        for ct in rel_chirp_time:
+            ax[2].plot([ct, ct], [y10 - yspan * 0.2, y10 + yspan * 1.3], '--', color='tab:orange')
+
+        ax[1].set_xticks([-30, -15, 0, 15, 30])
+        ax[2].set_xticks([-30, -15, 0, 15, 30])
+        plt.setp(ax[1].get_xticklabels(), visible=False)
+
+        # spectrograms
+        f_mask1 = np.arange(len(fill_freqs))[(fill_freqs >= y00 - yspan * 0.2) & (fill_freqs <= y00 + yspan * 1.3)]
+        f_mask2 = np.arange(len(fill_freqs))[(fill_freqs >= y10 - yspan * 0.2) & (fill_freqs <= y10 + yspan * 1.3)]
+        t_mask = np.arange(len(fill_times))[(fill_times >= rise_time - dt * 4) & (fill_times <= rise_time + dt * 4)]
+
+        ax[1].imshow(decibel(fill_spec[f_mask1[0]:f_mask1[-1], t_mask[0]:t_mask[-1]][::-1]),
+                     extent=[-dt * 4, dt * 4, y00 - yspan * 0.2, y00 + yspan * 1.3],
+                     aspect='auto', vmin=-100, vmax=-50, cmap='afmhot', interpolation='gaussian')
+        ax[2].imshow(decibel(fill_spec[f_mask2[0]:f_mask2[-1], t_mask[0]:t_mask[-1]][::-1]),
+                     extent=[-dt * 4, dt * 4, y10 - yspan * 0.2, y10 + yspan * 1.3],
+                     aspect='auto', vmin=-100, vmax=-50, cmap='afmhot', interpolation='gaussian')
+
+        ax[1].set_ylim(y00 - yspan * 0.1, y00 + yspan * 1.2)
+        # ax[1].set_xlim(-dt * 3, dt * 3)
+        ax[1].set_xlim(-dt, dt * 3)
+        ax[2].set_ylim(y10 - yspan * 0.1, y10 + yspan * 1.2)
+        # ax[2].set_xlim(-dt * 3, dt * 3)
+        ax[2].set_xlim(-dt, dt * 3)
+
+        ax[0].set_xticks([])
+        ax[0].set_yticks([])
+
+        ax[1].tick_params(labelsize=12, color='white', labelcolor='white')
+        ax[2].tick_params(labelsize=12, color='white', labelcolor='white')
+
+        # embed()
+        # quit()
+        for a in ax[1:]:
+            a.spines['left'].set_edgecolor('white')
+            a.spines['bottom'].set_edgecolor('white')
+        # for spine in ax[1].spines.values():
+        #     spine.set_edgecolor('white')
+        # for spine in ax[2].spines.values():
+        #     spine.set_edgecolor('white')
+
+        ax[2].set_xlabel('time [s]', fontsize=14, color='white')
+        fig.text(0.02, 0.5, 'frequency [Hz]', fontsize=14, va='center', rotation='vertical', color='white')
+        # embed()
+        # quit()
+        rise_dot_counter = 0
+        rise_passed = False
+        chirp_dot_counter = np.zeros(len(relevant_chirps), dtype=int)
+        chirp_passed = np.zeros(len(relevant_chirps), dtype=bool)
+        chirp_dot_handls = []
+        chirp_active = False
+
+        # plt.show()
+
+        # embed()
+        # quit()
+        for i in tqdm(np.arange(len(frames_oi))):
+            # break
+            video.set(cv2.CAP_PROP_POS_FRAMES, int(frames_oi[i]))
+            ret, frame = video.read()
+
+            if i == 0:
+                img = ax[0].imshow(frame)
+                line1, = ax[1].plot([frame_times[frames_oi[i]] - rise_time, frame_times[frames_oi[i]] - rise_time],
+                                    [y00 - yspan * 0.15, y00 + yspan * 1.3],
+                                    color='white', lw=1)
+                line2, = ax[2].plot([frame_times[frames_oi[i]] - rise_time, frame_times[frames_oi[i]] - rise_time],
+                                    [y10 - yspan * 0.15, y10 + yspan * 1.3],
+                                    color='white', lw=1)
+            else:
+                img.set_data(frame)
+                line1.set_data([frame_times[frames_oi[i]] - rise_time, frame_times[frames_oi[i]] - rise_time],
+                               [y00 - yspan * 0.15, y00 + yspan * 1.3])
+                line2.set_data([frame_times[frames_oi[i]] - rise_time, frame_times[frames_oi[i]] - rise_time],
+                               [y10 - yspan * 0.15, y10 + yspan * 1.3])
+
+            if frame_times[frames_oi[i]] - rise_time > 0:
+                if rise_passed == False:
+                    rise_dot, = ax[0].plot(0.05, 0.95, 'o', color='white', transform=ax[0].transAxes, markersize=20)
+                    rise_passed = True
+                    for pos in ['left', 'bottom', 'right', 'top']:
+                        ax[0].spines[pos].set_edgecolor('white')
+                        ax[0].spines[pos].set_edgecolor('white')
+
+                if rise_passed == True:
+                    if rise_dot_counter < 6:
+                        rise_dot_counter += 1
+                    elif rise_dot_counter == 6:
+                        rise_dot.remove()
+                        if not chirp_active:
+                            for pos in ['left', 'bottom', 'right', 'top']:
+                                ax[0].spines[pos].set_edgecolor('k')
+                                ax[0].spines[pos].set_edgecolor('k')
+
+                        rise_dot_counter += 1
+                    else:
+                        pass
+
+            for enu, chirp_time in enumerate(relevant_chirps):
+                if frame_times[frames_oi[i]] - chirp_time > 0:
+                    if chirp_passed[enu] == False:
+                        chirp_dot, = ax[0].plot(0.05, 0.95, 'o', color='tab:orange', transform=ax[0].transAxes,
+                                               markersize=20)
+                        chirp_dot_handls.append(chirp_dot)
+                        for pos in ['left', 'bottom', 'right', 'top']:
+                            ax[0].spines[pos].set_edgecolor('tab:orange')
+                            ax[0].spines[pos].set_edgecolor('tab:orange')
+                        chirp_passed[enu] = True
+
+                        chirp_active = True
+                    if chirp_passed[enu] == True:
+                        if chirp_dot_counter[enu] < 6:
+                            chirp_dot_counter[enu] += 1
+                        elif chirp_dot_counter[enu] == 6:
+                            chirp_dot_handls[enu].remove()
+                            for pos in ['left', 'bottom', 'right', 'top']:
+                                ax[0].spines[pos].set_edgecolor('k')
+                                ax[0].spines[pos].set_edgecolor('k')
+                            chirp_dot_counter[enu] += 1
+                        else:
+                            pass
+
+            label = (os.path.join(create_video_path,
+                                  'frame%4.f.jpg' % len(glob.glob(os.path.join(create_video_path, '*.jpg'))))).replace(' ',
+                                                                                                                       '0')
+            plt.savefig(label, dpi=300)
+
+
+    # for fish_nr in np.arange(2)[::-1]:
+    #     for idx_oi in tqdm(np.array(rise_idx[fish_nr][~np.isnan(rise_idx[fish_nr])], dtype=int)):
+    #         time_oi = times[idx_oi]
+    #
+    #         HH = int((time_oi / 3600) // 1)
+    #         MM = int((time_oi - HH * 3600) // 60)
+    #         SS =  int(time_oi - HH * 3600 - MM * 60)
+    #
+    #         frames_oi = np.arange(len(frame_times))[np.abs(frame_times - time_oi) <= dt]
+    #         idxs_oi = np.arange(len(times))[np.abs(times - time_oi) <= dt*3]
+    #
+    #         fig = plt.figure(figsize=(16*2/2.54, 9*2/2.54))
+    #         gs = gridspec.GridSpec(6, 2, left=0.075, bottom=0.05, right=1, top=0.95, width_ratios=(1.5, 3), hspace=.3, wspace=0.05)
+    #         ax = []
+    #         ax.append(fig.add_subplot(gs[:, 1]))
+    #         ax.append(fig.add_subplot(gs[1:3, 0]))
+    #         ax.append(fig.add_subplot(gs[3:5, 0]))
+    #
+    #
+    #         y00, y01 = np.nanmin(fish_freqs[0][idxs_oi]), np.nanmax(fish_freqs[0][idxs_oi])
+    #         y10, y11 = np.nanmin(fish_freqs[1][idxs_oi]), np.nanmax(fish_freqs[1][idxs_oi])
+    #
+    #         if y01 - y00 < 20:
+    #             y01 = y00 + 20
+    #         if y11 - y10 < 20:
+    #             y11 = y10 + 20
+    #         freq_span1 = (y01) - (y00)
+    #         freq_span2 = (y11) - (y10)
+    #
+    #         yspan = freq_span1 if freq_span1 > freq_span2 else freq_span2
+    #
+    #         ax[1].plot(times[idxs_oi] - time_oi, fish_freqs[0][idxs_oi], marker='.', markersize=4, color='darkorange', lw=2, alpha=0.4)
+    #         ax[2].plot(times[idxs_oi] - time_oi, fish_freqs[1][idxs_oi], marker='.', markersize=4,color='forestgreen', lw=2, alpha=0.4)
+    #         ax[1].plot([0, 0], [y00 - yspan * 0.2, y00 + yspan * 1.3], '--', color='k')
+    #         ax[2].plot([0, 0], [y10 - yspan * 0.2, y10 + yspan * 1.3], '--', color='k')
+    #
+    #         ax[1].set_xticks([-30, -15, 0, 15, 30])
+    #         ax[2].set_xticks([-30, -15, 0, 15, 30])
+    #         plt.setp(ax[1].get_xticklabels(), visible=False)
+    #
+    #         # spectrograms
+    #         f_mask1 = np.arange(len(fill_freqs))[(fill_freqs >= y00 - yspan * 0.2) & (fill_freqs <= y00 + yspan * 1.3)]
+    #         f_mask2 = np.arange(len(fill_freqs))[(fill_freqs >= y10 - yspan * 0.2) & (fill_freqs <= y10 + yspan * 1.3)]
+    #         t_mask = np.arange(len(fill_times))[(fill_times >= time_oi-dt*4) & (fill_times <= time_oi+dt*4)]
+    #
+    #         ax[1].imshow(decibel(fill_spec[f_mask1[0]:f_mask1[-1], t_mask[0]:t_mask[-1]][::-1]),
+    #                                           extent=[-dt*4, dt*4, y00 - yspan * 0.2, y00 + yspan * 1.3],
+    #                                           aspect='auto',vmin = -100, vmax = -50, alpha=0.7, cmap='jet', interpolation='gaussian')
+    #         ax[2].imshow(decibel(fill_spec[f_mask2[0]:f_mask2[-1], t_mask[0]:t_mask[-1]][::-1]),
+    #                                           extent=[-dt*4, dt*4, y10 - yspan * 0.2, y10 + yspan * 1.3],
+    #                                           aspect='auto',vmin = -100, vmax = -50, alpha=0.7, cmap='jet', interpolation='gaussian')
+    #
+    #         ax[1].set_ylim(y00 - yspan * 0.1, y00 + yspan * 1.2)
+    #         ax[1].set_xlim(-dt*3, dt*3)
+    #         ax[2].set_ylim(y10 - yspan * 0.1, y10 + yspan * 1.2)
+    #         ax[2].set_xlim(-dt*3, dt*3)
+    #
+    #         ax[0].set_xticks([])
+    #         ax[0].set_yticks([])
+    #
+    #         ax[1].tick_params(labelsize=12)
+    #         ax[2].tick_params(labelsize=12)
+    #
+    #         ax[2].set_xlabel('time [s]', fontsize=14)
+    #         fig.text(0.02, 0.5, 'frequency [Hz]', fontsize=14, va='center', rotation='vertical')
+    #
+    #         # plt.ion()
+    #         for i in tqdm(np.arange(len(frames_oi))):
+    #             # break
+    #             video.set(cv2.CAP_PROP_POS_FRAMES, int(frames_oi[i]))
+    #             ret, frame = video.read()
+    #
+    #             if i == 250:
+    #                 dot, = ax[0].plot(0.05, 0.95, 'o', color='firebrick', transform = ax[0].transAxes, markersize=20)
+    #             if i == 280:
+    #                 dot.remove()
+    #
+    #             if i == 0:
+    #                 img = ax[0].imshow(frame)
+    #                 line1, = ax[1].plot([frame_times[frames_oi[i]] - time_oi, frame_times[frames_oi[i]] - time_oi],
+    #                                    [y00 - yspan * 0.15, y00 + yspan * 1.3],
+    #                                    color='k', lw=1)
+    #                 line2, = ax[2].plot([frame_times[frames_oi[i]] - time_oi, frame_times[frames_oi[i]] - time_oi],
+    #                                    [y10 - yspan * 0.15, y10 + yspan * 1.3],
+    #                                    color='k', lw=1)
+    #             else:
+    #                 img.set_data(frame)
+    #                 line1.set_data([frame_times[frames_oi[i]] - time_oi, frame_times[frames_oi[i]] - time_oi],
+    #                               [y00 - yspan * 0.15, y00 + yspan * 1.3])
+    #                 line2.set_data([frame_times[frames_oi[i]] - time_oi, frame_times[frames_oi[i]] - time_oi],
+    #                               [y10 - yspan * 0.15, y10 + yspan * 1.3])
+    #
+    #             label = (os.path.join(create_video_path, 'frame%4.f.jpg' % len(glob.glob(os.path.join(create_video_path, '*.jpg'))))).replace(' ', '0')
+    #             plt.savefig(label, dpi=300)
+    #             # plt.pause(0.001)
 
             # quit()
-            win_lose_str = 'lose' if fish_nr == 1 else 'win'
-            # video_name = ("./rise_video/%s_%2.f:%2.f:%2.f.mp4" % (win_lose_str, HH, MM, SS)).replace(' ', '0')
-            # command = "ffmpeg -r 25 -i './rise_video/frame%4d.jpg' -vf 'pad=ceil(iw/2)*2:ceil(ih/2)*2' -vcodec libx264 -y -an"
-
-            video_name = os.path.join(create_video_path, ("%s_%2.f:%2.f:%2.f.mp4" % (win_lose_str, HH, MM, SS)).replace(' ', '0'))
-            command1 = "ffmpeg -r 25 -i"
-            frames_path = '"%s"' % os.path.join(create_video_path, "frame%4d.jpg")
-            command2 = "-vf 'pad=ceil(iw/2)*2:ceil(ih/2)*2' -vcodec libx264 -y -an"
-
-            os.system(' '.join([command1, frames_path, command2, video_name]))
-            os.system(' '.join(['rm', os.path.join(create_video_path, '*.jpg')]))
-            # os.system(' '.join([command, video_name]))
-            # os.system('rm ./rise_video/*.jpg')
-            plt.close()
+        win_lose_str = 'lose'
+        # video_name = ("./rise_video/%s_%2.f:%2.f:%2.f.mp4" % (win_lose_str, HH, MM, SS)).replace(' ', '0')
+        # command = "ffmpeg -r 25 -i './rise_video/frame%4d.jpg' -vf 'pad=ceil(iw/2)*2:ceil(ih/2)*2' -vcodec libx264 -y -an"
+
+        video_name = os.path.join(create_video_path, ("%s_%2.f:%2.f:%2.f.mp4" % (win_lose_str, HH, MM, SS)).replace(' ', '0'))
+        command1 = "ffmpeg -r 25 -i"
+        frames_path = '"%s"' % os.path.join(create_video_path, "frame%4d.jpg")
+        command2 = "-vf 'pad=ceil(iw/2)*2:ceil(ih/2)*2' -vcodec libx264 -y -an"
+
+        os.system(' '.join([command1, frames_path, command2, video_name]))
+        os.system(' '.join(['rm', os.path.join(create_video_path, '*.jpg')]))
+        # os.system(' '.join([command, video_name]))
+        # os.system('rm ./rise_video/*.jpg')
+        plt.close()
     embed()
     quit()