started chirp burst analysis

This commit is contained in:
Till Raab 2023-06-27 15:15:56 +02:00
parent 49c071e820
commit 8cc5d5e087

View File

@ -83,48 +83,7 @@ def iei_analysis(event_times, win_sex, lose_sex, kernal_w, title=''):
plt.savefig(os.path.join(os.path.split(__file__)[0], 'figures', 'event_meta', f'{title}_iei.png'), dpi=300)
plt.close()
# plt.show()
# for iei, kernal_w in zip([ici_lose, ici_win, iri_lose, iri_win],
# [1, 1, 5, 50]):
#
# fig = plt.figure(figsize=(20 / 2.54, 12 / 2.54))
# gs = gridspec.GridSpec(2, 2, left=0.1, bottom=0.1, right=0.95, top=0.95)
# ax = []
# ax.append(fig.add_subplot(gs[0, 0]))
# ax.append(fig.add_subplot(gs[0, 1], sharey=ax[0], sharex=ax[0]))
# ax.append(fig.add_subplot(gs[1, 0], sharey=ax[0], sharex=ax[0]))
# ax.append(fig.add_subplot(gs[1, 1], sharey=ax[0], sharex=ax[0]))
#
# for i in range(len(iei)):
# if win_sex[i] == 'm':
# if lose_sex[i] == 'm':
# color, linestyle = male_color, '-'
# sp = 0
# else:
# color, linestyle = male_color, '--'
# sp = 1
# else:
# if lose_sex[i] == 'm':
# color, linestyle = female_color, '--'
# sp = 2
# else:
# color, linestyle = female_color, '-'
# sp = 3
#
#
# conv_y = np.arange(0, np.percentile(np.hstack(iei), 90), .5)
# kde_array = kde(iei[i], conv_y, kernal_w=kernal_w, kernal_h=1)
#
# # kde_array /= np.sum(kde_array)
# ax[sp].plot(conv_y, kde_array, zorder=2, color=color, linestyle=linestyle, lw=2)
#
# plt.setp(ax[1].get_yticklabels(), visible=False)
# plt.setp(ax[3].get_yticklabels(), visible=False)
#
#
# plt.setp(ax[0].get_xticklabels(), visible=False)
# plt.setp(ax[1].get_xticklabels(), visible=False)
# plt.show()
return iei
def relative_rate_progression(all_event_t, title=''):
@ -563,11 +522,51 @@ def main(base_path):
lose_sex = np.array(lose_sex)
### inter event intervalls ###
iei_analysis(all_chirp_times_lose, win_sex, lose_sex, kernal_w=1, title=r'chirps$_{lose}$')
iei_analysis(all_chirp_times_win, win_sex, lose_sex, kernal_w=1, title=r'chirps$_{win}$')
iei_analysis(all_rise_times_lose, win_sex, lose_sex, kernal_w=5, title=r'rises$_{lose}$')
iei_analysis(all_rise_times_win, win_sex, lose_sex, kernal_w=50, title=r'rises$_{win}$')
inter_chirp_interval_lose = iei_analysis(all_chirp_times_lose, win_sex, lose_sex, kernal_w=1, title=r'chirps$_{lose}$')
_ = iei_analysis(all_chirp_times_win, win_sex, lose_sex, kernal_w=1, title=r'chirps$_{win}$')
_ = iei_analysis(all_rise_times_lose, win_sex, lose_sex, kernal_w=5, title=r'rises$_{lose}$')
_ = iei_analysis(all_rise_times_win, win_sex, lose_sex, kernal_w=50, title=r'rises$_{win}$')
embed()
quit()
fig, ax = plt.subplots()
ax.hist(np.hstack(inter_chirp_interval_lose), bins = np.arange(0, 20, 0.05))
ylim = ax.get_ylim()
med_ici = np.nanmedian(np.hstack(inter_chirp_interval_lose))
ax.plot([med_ici, med_ici], [ylim[0], ylim[1]], '-k', lw=2)
plt.show()
burst_chirp_mask = []
for enu, ici in enumerate(inter_chirp_interval_lose):
if len(ici) >= 1:
trial_burst_chirp_mask = np.zeros_like(ici)
trial_burst_chirp_mask[ici < med_ici] = 1
trial_burst_chirp_mask[1:][(ici[:-1] < med_ici) & (ici[1:] > med_ici)] = 2
last = 2 if trial_burst_chirp_mask[-1] == 1 else 0
trial_burst_chirp_mask = np.append(trial_burst_chirp_mask, np.array(last))
burst_chirp_mask.append(trial_burst_chirp_mask)
else:
burst_chirp_mask.append(np.array([]))
for i in range(len(burst_chirp_mask)):
fig, ax = plt.subplots()
ct_lose = all_chirp_times_lose[i][all_chirp_times_lose[i] <= 3600*3]
ax.plot(all_chirp_times_lose[i], np.ones_like(all_chirp_times_lose[i]), '|', markersize=12, color='grey')
ax.plot(ct_lose[burst_chirp_mask[i] == 0],
np.ones_like(ct_lose[burst_chirp_mask[i] == 0]), '.', markersize=8, color='k')
ax.plot(ct_lose[burst_chirp_mask[i] == 1],
np.ones_like(ct_lose[burst_chirp_mask[i] == 1])*2, '.', markersize=8, color='k')
ax.plot(ct_lose[burst_chirp_mask[i] == 2],
np.ones_like(ct_lose[burst_chirp_mask[i] == 2])*3, '.', markersize=8, color='firebrick')
ax.set_ylim(.5, 3.5)
plt.show()
### event progressions ###
print('')
relative_rate_progression(all_chirp_times_lose, title=r'chirp$_{lose}$')