created DataFrame containing trail data for corrections. Next would be to get to know sexes: load baseline -> q10 comp freqs -> > 749 == f

This commit is contained in:
Till Raab 2023-05-16 15:12:24 +02:00
parent fdd5e1cc01
commit 8517014571
2 changed files with 194 additions and 30 deletions

View File

@ -64,32 +64,94 @@ def load_boris(trial_path, recording):
return times, behavior, np.array(t_ag_on_off), t_contact.to_numpy(), data['FPS'][0]
def get_baseline_freq(fund_v, idx_v, times, ident_v, idents = None, binwidth = 300):
if not hasattr(idents, '__len__'):
idents = np.unique(ident_v[~np.isnan(ident_v)])
base_freqs = []
for id in idents:
f = fund_v[ident_v == id]
t = times[idx_v[ident_v == id]]
bins = np.arange(-binwidth/2, times[-1] + binwidth/2, binwidth)
base_f = np.full(len(bins)-1, np.nan)
for i in range(len(bins)-1):
Cf = f[(t > bins[i]) & (t <= bins[i+1])]
if len(Cf) == 0:
continue
else:
base_f[i] = np.percentile(Cf, 5)
base_freqs.append(base_f)
return np.array(base_freqs), np.array(bins[:-1] + (bins[1] - bins[0])/2)
def frequency_q10_compensation(baseline_freq, temp, temp_t, light_start_sec):
q10_comp_freq = []
q10_vals = []
for bf in baseline_freq:
Cbf = np.copy(bf)
Ctemp = np.copy(temp)
if len(Cbf) > len(Ctemp):
Cbf = Cbf[:len(Ctemp)]
elif len(Ctemp) > len(Cbf):
Ctemp = Ctemp[:len(Cbf)]
else:
pass
q10s = []
for i in range(len(Cbf) - 1):
for j in np.arange(len(Cbf) - 1) + 1:
if Cbf[i] == Cbf[j] or Ctemp[i] == Ctemp[j]:
# q10 with same values is useless
continue
if temp_t[i] < light_start_sec or temp_t[j] < light_start_sec:
# to much frequency changes due to rises in first part of rec !!!
continue
Cq10 = q10(Cbf[i], Cbf[j], Ctemp[i], Ctemp[j])
q10s.append(Cq10)
q10_comp_freq.append(Cbf * np.median(q10s) ** ((25 - Ctemp) / 10))
q10_vals.append(np.median(q10s))
return q10_comp_freq, q10_vals
def get_temperature(folder_path):
temp_file = pd.read_csv(os.path.join(folder_path, 'temperatures.csv'), sep=';')
temp_t = temp_file[temp_file.keys()[0]]
temp = temp_file[temp_file.keys()[1]]
temp_t = np.array(temp_t)
temp = np.array(temp)
if type(temp[-1]).__name__== 'str':
temp = np.array(temp[:-1], dtype=float)
temp_t = np.array(temp_t[:-1], dtype=int)
return np.array(temp_t), np.array(temp)
def main(data_folder=None):
colors = ['#BA2D22', '#53379B', '#F47F17', '#3673A4', '#AAB71B', '#DC143C', '#1E90FF']
female_color, male_color = '#e74c3c', '#3498db'
Wc, Lc = 'darkgreen', '#3673A4'
trials_meta = pd.read_csv('order_meta.csv')
fish_meta = pd.read_csv('id_meta.csv')
fish_meta['mean_w'] = np.nanmean(fish_meta.loc[:, ['w1', 'w2', 'w3']], axis=1)
fish_meta['mean_l'] = np.nanmean(fish_meta.loc[:, ['l1', 'l2', 'l3']], axis=1)
video_stated_FPS = 25 # cap.get(cv2.CAP_PROP_FPS)
sr = 20_000
for trial_idx in range(len(trials_meta)):
print('')
trial_summary = pd.DataFrame(columns=['sex_win', 'sex_lose', 'size_win', 'size_lose', 'EODf_win', 'EODf_lose',
'exp_win', 'exp_lose', 'chirps_win', 'chirps_lose', 'rises_win', 'rise_lose'])
trial_summary_row = {f'{s}':None for s in trial_summary.keys()}
for trial_idx in range(len(trials_meta)):
group = trials_meta['group'][trial_idx]
recording = trials_meta['recording'][trial_idx][1:-1]
rec_id1 = trials_meta['rec_id1'][trial_idx]
rec_id2 = trials_meta['rec_id2'][trial_idx]
f1_length = float(fish_meta['mean_l'][(fish_meta['group'] == trials_meta['group'][trial_idx]) &
(fish_meta['fish'] == trials_meta['fish1'][trial_idx])])
f2_length = float(fish_meta['mean_l'][(fish_meta['group'] == trials_meta['group'][trial_idx]) &
(fish_meta['fish'] == trials_meta['fish2'][trial_idx])])
if group < 3:
continue
@ -103,11 +165,29 @@ def main(data_folder=None):
if not os.path.exists(os.path.join(trial_path, 'LED_frames.npy')):
continue
#############################################################################################################
### meta collect
win_id = rec_id1 if trials_meta['fish1'][trial_idx] == trials_meta['winner'][trial_idx] else rec_id2
lose_id = rec_id2 if trials_meta['fish1'][trial_idx] == trials_meta['winner'][trial_idx] else rec_id1
f1_length = float(fish_meta['mean_l'][(fish_meta['group'] == trials_meta['group'][trial_idx]) &
(fish_meta['fish'] == trials_meta['fish1'][trial_idx])])
f2_length = float(fish_meta['mean_l'][(fish_meta['group'] == trials_meta['group'][trial_idx]) &
(fish_meta['fish'] == trials_meta['fish2'][trial_idx])])
win_l = f1_length if trials_meta['fish1'][trial_idx] == trials_meta['winner'][trial_idx] else f2_length
lose_l = f2_length if trials_meta['fish1'][trial_idx] == trials_meta['winner'][trial_idx] else f1_length
win_exp = trials_meta['exp1'][trial_idx] if trials_meta['winner'][trial_idx] == trials_meta['fish1'][trial_idx] else trials_meta['exp2'][trial_idx]
lose_exp = trials_meta['exp2'][trial_idx] if trials_meta['winner'][trial_idx] == trials_meta['fish1'][trial_idx] else trials_meta['exp1'][trial_idx]
#############################################################################################################
fund_v = np.load(os.path.join(trial_path, 'fund_v.npy'))
ident_v = np.load(os.path.join(trial_path, 'ident_v.npy'))
idx_v = np.load(os.path.join(trial_path, 'idx_v.npy'))
times = np.load(os.path.join(trial_path, 'times.npy'))
print('')
if len(uid:=np.unique(ident_v[~np.isnan(ident_v)])) >2:
print(f'to many ids: {len(uid)}')
print(f'ids in recording: {uid[0]:.0f} {uid[1]:.0f}')
@ -117,27 +197,66 @@ def main(data_folder=None):
if ~np.all(meta_id_in_uid):
continue
temp_t, temp = get_temperature(trial_path)
#############################################################################################################
### communication
got_chirps = False
if os.path.exists(os.path.join(trial_path, 'chirp_times_cnn.npy')):
chirp_t = np.load(os.path.join(trial_path, 'chirp_times_cnn.npy'))
chirp_ids = np.load(os.path.join(trial_path, 'chirp_ids_cnn.npy'))
got_chirps = True
chirp_times = [chirp_t[chirp_ids == win_id], chirp_t[chirp_ids == lose_id]]
rise_idx = np.load(os.path.join(trial_path, 'analysis', 'rise_idx.npy'))
rise_idx_int = [np.array(rise_idx[i][~np.isnan(rise_idx[i])], dtype=int) for i in range(len(rise_idx))]
#############################################################################################################
### physical behavior
contact_t_GRID, ag_on_off_t_GRID, led_idx, led_frames = \
load_and_converete_boris_events(trial_path, recording, sr, video_stated_FPS=video_stated_FPS)
embed()
quit()
trial_summary.loc[len(trial_summary)] = trial_summary_row
trial_summary.iloc[-1] = {'sex_win': 'n',
'sex_lose': 'n',
'size_win': win_l,
'size_lose': lose_l,
'EODf_win': -1,
'EODf_lose': -1,
'exp_win': win_exp,
'exp_lose': lose_exp,
'chirps_win': len(chirp_times[0]),
'chirps_lose': len(chirp_times[1]),
'rises_win': len(rise_idx_int[0]),
'rise_lose': len(rise_idx_int[1])
}
# embed()
###############################################################################
fig = plt.figure(figsize=(30/2.54, 18/2.54))
gs = gridspec.GridSpec(2, 1, left = 0.1, bottom = 0.1, right=0.95, top=0.95, height_ratios=[1, 3])
gs = gridspec.GridSpec(2, 1, left = 0.1, bottom = 0.1, right=0.95, top=0.95, height_ratios=[1, 3], hspace=0)
ax = []
ax.append(fig.add_subplot(gs[0, 0]))
ax.append(fig.add_subplot(gs[1, 0], sharex=ax[0]))
for id in uid:
ax[1].plot(times[idx_v[ident_v == id]] / 3600, fund_v[ident_v == id], marker='.')
ax[0].plot(contact_t_GRID / 3600, np.ones_like(contact_t_GRID) , '|', markersize=20, color='k')
ax[0].plot(ag_on_off_t_GRID[:, 0] / 3600, np.ones_like(ag_on_off_t_GRID[:, 0]) * 2, '|', markersize=20, color='red')
ax[1].plot(times[idx_v[ident_v == win_id]] / 3600, fund_v[ident_v == win_id], color=Wc)
ax[1].plot(times[idx_v[ident_v == lose_id]] / 3600, fund_v[ident_v == lose_id], color=Lc)
ax[0].plot(contact_t_GRID / 3600, np.ones_like(contact_t_GRID) , '|', markersize=10, color='k')
ax[0].plot(ag_on_off_t_GRID[:, 0] / 3600, np.ones_like(ag_on_off_t_GRID[:, 0]) * 2, '|', markersize=10, color='firebrick')
ax[0].plot(times[rise_idx_int[0]] / 3600, np.ones_like(rise_idx_int[0]) * 4, '|', markersize=10, color=Wc)
ax[0].plot(times[rise_idx_int[1]] / 3600, np.ones_like(rise_idx_int[1]) * 5, '|', markersize=10, color=Lc)
if got_chirps:
ax[0].plot(chirp_times[0] / 3600, np.ones_like(chirp_times[0]) * 7, '|', markersize=10, color=Wc)
ax[0].plot(chirp_times[1] / 3600, np.ones_like(chirp_times[1]) * 8, '|', markersize=10, color=Lc)
min_f, max_f = np.min(fund_v[~np.isnan(ident_v)]), np.nanmax(fund_v[~np.isnan(ident_v)])
ax[0].set_ylim(0, 3)
ax[0].set_yticks([1, 2])
ax[0].set_yticklabels(['contact', 'chase'])
ax[0].set_ylim(0, 9)
ax[0].set_yticks([1, 2, 4, 5, 7, 8])
ax[0].set_yticklabels(['contact', 'chase', r'rise$_{win}$', r'rise$_{lose}$', r'chirp$_{win}$', r'chirp$_{lose}$'])
ax[1].set_ylim(min_f-50, max_f+50)
ax[1].set_xlim(times[0]/3600, times[-1]/3600)
@ -149,6 +268,30 @@ def main(data_folder=None):
plt.show()
fig = plt.figure(figsize=(20/2.54, 20/2.54))
gs = gridspec.GridSpec(2, 2, left=0.1, bottom=0.1, right=0.95, top=0.95, height_ratios=[1, 3], width_ratios=[3, 1])
ax = fig.add_subplot(gs[1, 0])
ax.plot(trial_summary['rises_win'], trial_summary['chirps_win'], 'o', color=Wc, label='winner')
ax.plot(trial_summary['rise_lose'], trial_summary['chirps_lose'], 'o', color=Lc, label='loster')
ax.set_xlabel('rises [n]', fontsize=12)
ax.set_ylabel('chirps [n]', fontsize=12)
ax.tick_params(labelsize=10)
ax_chirps = fig.add_subplot(gs[1, 1], sharey=ax)
ax_chirps.boxplot([trial_summary['chirps_win'], trial_summary['chirps_lose']], widths = .5, positions = [1, 2])
ax_chirps.set_xticks([1, 2])
ax_chirps.set_xticklabels(['Win', 'Lose'])
plt.setp(ax_chirps.get_yticklabels(), visible=False)
ax_rises = fig.add_subplot(gs[0, 0], sharex=ax)
ax_rises.boxplot([trial_summary['rises_win'], trial_summary['rise_lose']], widths = .5, positions = [1, 2], vert=False)
ax_rises.set_yticks([1, 2])
ax_rises.set_yticklabels(['Win', 'Lose'])
plt.setp(ax_rises.get_xticklabels(), visible=False)
plt.show()
embed()
quit()

View File

@ -70,11 +70,17 @@ class Trial(object):
for enu, id in enumerate(self.ids):
i0, i1 = self.idx_v[self.ident_v == id][0], self.idx_v[self.ident_v == id][-1]
# self.fish_freq_interp[enu, i0:i1+1] = np.interp(self.times[i0:i1+1],
# self.times[self.idx_v[self.ident_v == id]],
# self.fish_freq[enu][~np.isnan(self.fish_freq[enu])])
self.fish_freq_interp[enu, i0:i1+1] = np.interp(self.times[i0:i1+1],
self.times[self.idx_v[self.ident_v == id]],
self.fish_freq[enu][~np.isnan(self.fish_freq[enu])])
self.fund_v[self.ident_v == id])
help_sign_v = list(map(lambda x: np.interp(self.times[i0:i1+1], self.times[self.idx_v[self.ident_v == id]], x), self.fish_sign[enu][~np.isnan(self.fish_freq[enu])].T))
# help_sign_v = list(map(lambda x: np.interp(self.times[i0:i1+1], self.times[self.idx_v[self.ident_v == id]], x),
# self.fish_sign[enu][~np.isnan(self.fish_freq[enu])].T))
help_sign_v = list(map(lambda x: np.interp(self.times[i0:i1+1], self.times[self.idx_v[self.ident_v == id]], x),
self.sign_v[self.ident_v == id].T))
self.fish_sign_interp[enu, i0:i1+1] = np.array(help_sign_v).T
def baseline_freq(self, bw = 300):
@ -132,7 +138,9 @@ class Trial(object):
corrected_rise_idxs = []
for enu, r_idx in enumerate(rise_peak_idx):
mask = np.arange(len(freq_slope))[(self.times <= self.times[r_idx]) & (self.times > self.times[r_idx] - rise_dt[enu]) & (~np.isnan(freq_slope))]
mask = np.arange(len(freq_slope))[(self.times <= self.times[r_idx]) &
(self.times > self.times[r_idx] - rise_dt[enu]) &
(~np.isnan(freq_slope))]
if len(mask) == 0:
corrected_rise_idxs.append(np.nan)
else:
@ -247,25 +255,38 @@ class Trial(object):
def main():
parser = argparse.ArgumentParser(description='Evaluated electrode array recordings with multiple fish.')
parser.add_argument('-f', type=str, help='single recording analysis', default='')
parser.add_argument('file', type=str, help='single recording analysis', default='')
parser.add_argument('-d', "--dev", action="store_true", help="developer mode; no data saved")
# parser.add_argument('-x', type=int, nargs=2, default=[1272, 1282], help='x-borders of LED detect area (in pixels)')
# parser.add_argument('-y', type=int, nargs=2, default=[1500, 1516], help='y-borders of LED area (in pixels)')
args = parser.parse_args()
base_path = '/home/raab/data/2022_competition'
base_path = None
folders = []
for root, dirs, files in os.walk(args.file):
for file in files:
if file.endswith('.raw'):
root = os.path.normpath(root)
print(root, file)
print(os.path.join(root, file))
folders.append(os.path.split(root)[-1])
if not base_path:
base_path = os.path.split(root)[0]
folders = sorted(folders)
if os.path.exists(os.path.join(base_path, 'meta.csv')) and not args.dev:
meta = pd.read_csv(os.path.join(base_path, 'meta.csv'), sep=',', index_col=0, encoding = "utf-7")
else:
meta = None
if args.f == '':
folders = os.listdir(base_path)
folders = [x for x in folders if not '.' in x]
else:
folders= [os.path.split(os.path.normpath(args.f))[-1]]
folders = sorted(folders)
# embed()
# if args.f == '':
# folders = os.listdir(args.f)
# folders = [x for x in folders if not '.' in x]
# else:
# folders= [os.path.split(os.path.normpath(args.f))[-1]]
# folders = sorted(folders)
trials = []
for folder in folders:
trial = Trial(folder, base_path, meta, fish_count=2)