examples are nice... make a function, clean it up
This commit is contained in:
parent
4c3bd818b9
commit
48314b363f
166
ethogram.py
166
ethogram.py
@ -2,6 +2,8 @@ import os
|
||||
import sys
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.gridspec as gridspec
|
||||
from matplotlib.patches import Patch
|
||||
from matplotlib.lines import Line2D
|
||||
from mpl_toolkits.axes_grid1 import make_axes_locatable
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
@ -87,6 +89,7 @@ def plot_transition_diagram(matrix, labels, node_size, ax, threshold=5,
|
||||
ax.set_xlim(-1.3, 1.3)
|
||||
ax.set_ylim(-1.3, 1.3)
|
||||
ax.set_title(title, fontsize=12)
|
||||
|
||||
def main(base_path):
|
||||
if not os.path.exists(os.path.join(os.path.split(__file__)[0], 'figures', 'markov')):
|
||||
os.makedirs(os.path.join(os.path.split(__file__)[0], 'figures', 'markov'))
|
||||
@ -103,10 +106,20 @@ def main(base_path):
|
||||
|
||||
# agonistic categorie plot
|
||||
fig = plt.figure(figsize=(20 / 2.54, 12 / 2.54))
|
||||
gs = gridspec.GridSpec(1, 1, left=0.1, bottom=0.1, right=0.95, top=0.95)
|
||||
ax = fig.add_subplot(gs[0, 0])
|
||||
gs = gridspec.GridSpec(2, 1, left=0.1, bottom=0.1, right=0.9, top=0.95, height_ratios=[1, 4], hspace=0)
|
||||
ax = fig.add_subplot(gs[1, 0])
|
||||
ax_spec = fig.add_subplot(gs[0, 0], sharex=ax)
|
||||
plt.setp(ax_spec.get_xticklabels(), visible=False)
|
||||
|
||||
for i in range(1, 5):
|
||||
ax.fill_between([0, 4], np.array([-.2, -.2]) + i, np.array([.2, .2]) + i, color='tab:grey')
|
||||
ax.fill_between([5, 10], np.array([-.2, -.2]) + i, np.array([.2, .2]) + i, color='tab:grey')
|
||||
|
||||
fill_dots = np.arange(4, 5.1, 0.125)
|
||||
ax.plot(fill_dots, np.ones_like(fill_dots)*i, '.', color='tab:grey', markersize=3)
|
||||
|
||||
got_examples = [False, False, False, False]
|
||||
example_skips = [3, 4, 1, 0]
|
||||
example_skips = [3, 4, 3, 0]
|
||||
|
||||
for index, trial in trial_summary.iterrows():
|
||||
trial_path = os.path.join(base_path, trial['recording'])
|
||||
@ -209,7 +222,8 @@ def main(base_path):
|
||||
rise_before = True
|
||||
|
||||
if np.any( ((chase_off_time - chirp_times[1]) < chirp_dt) & ((chirp_times[1] - chase_off_time) < max_dt)):
|
||||
chirp_time_oi = chirp_times[1][((chase_off_time - chirp_times[1]) < chirp_dt) & ((chirp_times[1] - chase_off_time) < max_dt)]
|
||||
# chirp_time_oi = chirp_times[1][((chase_off_time - chirp_times[1]) < chirp_dt) & ((chirp_times[1] - chase_off_time) < max_dt)]
|
||||
chirp_time_oi = chirp_times[1][((chase_off_time - chirp_times[1]) < chase_dur) & ((chirp_times[1] - chase_off_time) < max_dt)]
|
||||
chirp_arround_end = True
|
||||
|
||||
if rise_before:
|
||||
@ -227,9 +241,6 @@ def main(base_path):
|
||||
if chase_dur > 10:
|
||||
if np.any((chirp_time_oi - chase_off_time) < 0) and np.any((chirp_time_oi - chase_off_time) > 0):
|
||||
if example_skips[int(agonitic_categorie[enu] - 1)] == 0:
|
||||
ax.fill_between([0, 10],
|
||||
np.array([-.2, -.2]) + agonitic_categorie[enu],
|
||||
np.array([.2, .2]) + agonitic_categorie[enu], color='tab:grey')
|
||||
for ct in chirp_time_oi:
|
||||
ax.plot([ct - chase_off_time + 10, ct - chase_off_time + 10],
|
||||
[agonitic_categorie[enu] - .2, agonitic_categorie[enu] + .2], color='k', lw=2)
|
||||
@ -239,73 +250,109 @@ def main(base_path):
|
||||
got_examples[0] = True
|
||||
else:
|
||||
example_skips[int(agonitic_categorie[enu] - 1)] -= 1
|
||||
|
||||
elif agonitic_categorie[enu] == 2 and not got_examples[1]:
|
||||
if chase_dur > 10:
|
||||
if example_skips[int(agonitic_categorie[enu] - 1)] == 0:
|
||||
ax.fill_between([0, 10],
|
||||
np.array([-.2, -.2]) + agonitic_categorie[enu],
|
||||
np.array([.2, .2]) + agonitic_categorie[enu], color='tab:grey')
|
||||
for rt in rise_times_oi:
|
||||
ax.plot([rt - chase_on_time, rt - chase_on_time],
|
||||
[agonitic_categorie[enu] - .2, agonitic_categorie[enu] + .2], color='firebrick', lw=2)
|
||||
got_examples[1] = True
|
||||
else:
|
||||
example_skips[int(agonitic_categorie[enu] - 1)] -= 1
|
||||
|
||||
elif agonitic_categorie[enu] == 3 and not got_examples[2]:
|
||||
if chase_dur > 10:
|
||||
if np.any((chirp_time_oi - chase_off_time) < 0) and np.any((chirp_time_oi - chase_off_time) > 0):
|
||||
if example_skips[int(agonitic_categorie[enu] - 1)] == 0:
|
||||
ax.fill_between([0, 10],
|
||||
np.array([-.2, -.2]) + agonitic_categorie[enu],
|
||||
np.array([.2, .2]) + agonitic_categorie[enu], color='tab:grey')
|
||||
for ct in chirp_time_oi:
|
||||
ax.plot([ct - chase_off_time + 10, ct - chase_off_time + 10],
|
||||
[agonitic_categorie[enu] - .2, agonitic_categorie[enu] + .2], color='k', lw=2)
|
||||
got_examples[2] = True
|
||||
else:
|
||||
example_skips[int(agonitic_categorie[enu] - 1)] -= 1
|
||||
|
||||
|
||||
elif agonitic_categorie[enu] == 4 and not got_examples[3]:
|
||||
if chase_dur > 10:
|
||||
ax.fill_between([0, 10],
|
||||
np.array([-.2, -.2]) + agonitic_categorie[enu],
|
||||
np.array([.2, .2]) + agonitic_categorie[enu], color='tab:grey')
|
||||
got_examples[3] = True
|
||||
else:
|
||||
pass
|
||||
|
||||
for i in range(4):
|
||||
### agonistic categories
|
||||
stacked_agonistic_categories = np.hstack(all_agonistic_categorie)
|
||||
stacked_all_chase_durs = np.hstack(all_chase_durs)
|
||||
|
||||
ax.plot([0, 0], [0, 5], '--', color='k', lw=1)
|
||||
ax.plot([10, 10], [0, 5], '--', color='k', lw=1)
|
||||
ax.set_ylim(0.5, 4.5)
|
||||
pct_each_categorie = np.zeros(4)
|
||||
for enu, cat in enumerate(range(1, 5)):
|
||||
pct_each_categorie[enu] = len(stacked_agonistic_categories[stacked_agonistic_categories == cat]) / len(stacked_agonistic_categories)
|
||||
|
||||
# example plot
|
||||
for enu, cat_pct in enumerate(pct_each_categorie):
|
||||
ax.text(15.2, enu+1, f'{cat_pct*100:.1f}' + ' $\%$', clip_on=False, fontsize=14, ha='left', va='center')
|
||||
|
||||
|
||||
ax.plot([0, 0], [0.8, 5], '--', color='k', lw=1)
|
||||
ax.plot([10, 10], [0.8, 5], '--', color='k', lw=1)
|
||||
ax.set_ylim(0.25, 4.5)
|
||||
ax.set_xlim(-5, 15)
|
||||
ax.set_yticks([1, 2, 3, 4])
|
||||
# ax.set_yticklabels([r'rise$_{pre}$ $&$ chirp$_{end}$', r'only rise$_{pre}$', r'only chirp$_{end}$', 'no communication'])
|
||||
ax.set_yticklabels(['A ', 'B ', 'C ', 'D '])
|
||||
ax.invert_yaxis()
|
||||
ax.set_xlabel('time [s]', fontsize=12)
|
||||
ax.tick_params(axis='y', labelsize=20)
|
||||
ax.tick_params(axis = 'x', labelsize=10)
|
||||
|
||||
legend_elements = [Line2D([0], [0], color='firebrick', lw=2, label=r'rise$_{lose}$'),
|
||||
Line2D([0], [0], color='k', lw=2, label=r'chirp$_{lose}$'),
|
||||
Patch(facecolor='tab:grey', edgecolor='w', label= 'chase event')]
|
||||
|
||||
ax.legend(handles=legend_elements, loc='upper right', ncol=3, bbox_to_anchor=(1, 1), frameon=False, fontsize=10, facecolor='white')
|
||||
ax.spines[['right', 'top']].set_visible(False)
|
||||
plt.show()
|
||||
embed()
|
||||
quit()
|
||||
|
||||
# bar plot
|
||||
fig, ax = plt.subplots(figsize=(20/2.54, 12/2.54))
|
||||
ax.bar(np.arange(4),
|
||||
[len(stacked_agonistic_categories[stacked_agonistic_categories == 1]),
|
||||
len(stacked_agonistic_categories[stacked_agonistic_categories == 2]),
|
||||
len(stacked_agonistic_categories[stacked_agonistic_categories == 3]),
|
||||
len(stacked_agonistic_categories[stacked_agonistic_categories == 4])])
|
||||
ax.set_xticks(np.arange(4))
|
||||
ax.set_xticklabels([r'rise$_{pre}$ + chirp$_{end}$', r'rise$_{pre}$ + _', r'_ + chirp$_{end}$', '_ + _'])
|
||||
plt.show()
|
||||
|
||||
# pct
|
||||
pct_agon_categorie = np.zeros(shape=(len(all_agonistic_categorie), 4))
|
||||
for enu, agonitic_categorie in enumerate(all_agonistic_categorie):
|
||||
for cat in np.arange(4):
|
||||
pct_agon_categorie[enu, cat] = len(agonitic_categorie[agonitic_categorie == cat+1]) / len(agonitic_categorie)
|
||||
|
||||
fig, ax = plt.subplots(figsize=(20 / 2.54, 12 / 2.54))
|
||||
ax.bar(np.arange(4), pct_agon_categorie.mean(0))
|
||||
ax.errorbar(np.arange(4), pct_agon_categorie.mean(0), yerr=pct_agon_categorie.std(0), fmt='', color='k', linestyle='None')
|
||||
ax.set_xticks(np.arange(4))
|
||||
ax.set_xticklabels([r'rise$_{pre}$ + chirp$_{end}$', r'rise$_{pre}$ + _', r'_ + chirp$_{end}$', '_ + _'])
|
||||
plt.show()
|
||||
|
||||
|
||||
### marcov models
|
||||
all_marcov_matrix = np.array(all_marcov_matrix)
|
||||
all_event_counts = np.array(all_event_counts)
|
||||
|
||||
collective_marcov_matrix = np.sum(all_marcov_matrix, axis=0)
|
||||
collective_event_counts = np.sum(all_event_counts, axis=0)
|
||||
|
||||
|
||||
plot_transition_matrix(collective_marcov_matrix, loop_labels)
|
||||
|
||||
fig, ax = plt.subplots(figsize=(21 / 2.54, 19 / 2.54))
|
||||
fig.subplots_adjust(left=0.05, bottom=0.05, right=0.95, top=0.95)
|
||||
|
||||
plot_transition_diagram(collective_marcov_matrix / collective_event_counts.reshape(len(collective_event_counts), 1) * 100,
|
||||
loop_labels, collective_event_counts, ax, threshold=5, color_by_origin=True, title='origin triggers target [%]')
|
||||
plot_transition_diagram(
|
||||
collective_marcov_matrix / collective_event_counts.reshape(len(collective_event_counts), 1) * 100,
|
||||
loop_labels, collective_event_counts, ax, threshold=5, color_by_origin=True, title='origin triggers target [%]')
|
||||
plt.savefig(os.path.join(os.path.split(__file__)[0], 'figures', 'markov', 'markov_destination' + '.png'), dpi=300)
|
||||
plt.close()
|
||||
|
||||
fig, ax = plt.subplots(figsize=(21 / 2.54, 19 / 2.54))
|
||||
fig.subplots_adjust(left=0.05, bottom=0.05, right=0.95, top=0.95)
|
||||
plot_transition_diagram(collective_marcov_matrix / collective_event_counts * 100,
|
||||
loop_labels, collective_event_counts, ax, threshold=5, color_by_target=True, title='target triggered by origin [%]')
|
||||
loop_labels, collective_event_counts, ax, threshold=5, color_by_target=True,
|
||||
title='target triggered by origin [%]')
|
||||
plt.savefig(os.path.join(os.path.split(__file__)[0], 'figures', 'markov', 'markov_origin' + '.png'), dpi=300)
|
||||
plt.close()
|
||||
|
||||
@ -317,7 +364,8 @@ def main(base_path):
|
||||
marcov_matrix / event_counts.reshape(len(event_counts), 1) * 100,
|
||||
loop_labels, event_counts, ax, threshold=5, color_by_origin=True,
|
||||
title='origin triggers target [%]')
|
||||
plt.savefig(os.path.join(os.path.split(__file__)[0], 'figures', 'markov', f'markov_{i}_destination' + '.png'), dpi=300)
|
||||
plt.savefig(os.path.join(os.path.split(__file__)[0], 'figures', 'markov', f'markov_{i}_destination' + '.png'),
|
||||
dpi=300)
|
||||
plt.close()
|
||||
|
||||
fig, ax = plt.subplots(figsize=(21 / 2.54, 19 / 2.54))
|
||||
@ -325,58 +373,12 @@ def main(base_path):
|
||||
plot_transition_diagram(marcov_matrix / event_counts * 100,
|
||||
loop_labels, event_counts, ax, threshold=5, color_by_target=True,
|
||||
title='target triggered by origin [%]')
|
||||
plt.savefig(os.path.join(os.path.split(__file__)[0], 'figures', 'markov', f'markov_{i}_origin' + '.png'), dpi=300)
|
||||
plt.savefig(os.path.join(os.path.split(__file__)[0], 'figures', 'markov', f'markov_{i}_origin' + '.png'),
|
||||
dpi=300)
|
||||
plt.close()
|
||||
|
||||
embed()
|
||||
quit()
|
||||
### agonistic categories
|
||||
|
||||
# stacked
|
||||
stacked_agonistic_categories = np.hstack(all_agonistic_categorie)
|
||||
stacked_all_chase_durs = np.hstack(all_chase_durs)
|
||||
|
||||
# idx_cat_4 = np.where(stacked_agonistic_categories == 4)[0]
|
||||
# idx_cat_4 = idx_cat_4[np.argsort(stacked_all_chase_durs[idx_cat_4])]
|
||||
# idx_cat_3 = np.where(stacked_agonistic_categories == 3)[0]
|
||||
# idx_cat_3 = idx_cat_3[np.argsort(stacked_all_chase_durs[idx_cat_3])]
|
||||
# idx_cat_2 = np.where(stacked_agonistic_categories == 2)[0]
|
||||
# idx_cat_2 = idx_cat_2[np.argsort(stacked_all_chase_durs[idx_cat_2])]
|
||||
# idx_cat_1 = np.where(stacked_agonistic_categories == 1)[0]
|
||||
# idx_cat_1 = idx_cat_1[np.argsort(stacked_all_chase_durs[idx_cat_1])]
|
||||
#
|
||||
# fig, ax = plt.subplots(figsize=(20/2.54, 12/2.54))
|
||||
# ax.plot(10 - stacked_all_chase_durs[idx_cat_4], np.arange(len(idx_cat_4)))
|
||||
# ax.plot(10 - stacked_all_chase_durs[idx_cat_3], np.arange(len(idx_cat_4), len(idx_cat_3) + len(idx_cat_4)))
|
||||
# ax.plot(10 - stacked_all_chase_durs[idx_cat_2], np.arange(len(idx_cat_3) + len(idx_cat_4), len(idx_cat_2) + len(idx_cat_3) + len(idx_cat_4)))
|
||||
# ax.plot(10 - stacked_all_chase_durs[idx_cat_1], np.arange(len(idx_cat_2) + len(idx_cat_3) + len(idx_cat_4), len(idx_cat_1) + len(idx_cat_2) + len(idx_cat_3) + len(idx_cat_4)))
|
||||
# ax.set_xlim(0, 10)
|
||||
# plt.show()
|
||||
|
||||
|
||||
fig, ax = plt.subplots(figsize=(20/2.54, 12/2.54))
|
||||
ax.bar(np.arange(4),
|
||||
[len(stacked_agonistic_categories[stacked_agonistic_categories == 1]),
|
||||
len(stacked_agonistic_categories[stacked_agonistic_categories == 2]),
|
||||
len(stacked_agonistic_categories[stacked_agonistic_categories == 3]),
|
||||
len(stacked_agonistic_categories[stacked_agonistic_categories == 4])])
|
||||
ax.set_xticks(np.arange(4))
|
||||
ax.set_xticklabels([r'rise$_{pre}$ + chirp$_{end}$', r'rise$_{pre}$ + _', r'_ + chirp$_{end}$', '_ + _'])
|
||||
plt.show()
|
||||
|
||||
# pct
|
||||
pct_agon_categorie = np.zeros(shape=(len(all_agonistic_categorie), 4))
|
||||
for enu, agonitic_categorie in enumerate(all_agonistic_categorie):
|
||||
for cat in np.arange(4):
|
||||
pct_agon_categorie[enu, cat] = len(agonitic_categorie[agonitic_categorie == cat+1]) / len(agonitic_categorie)
|
||||
|
||||
fig, ax = plt.subplots(figsize=(20 / 2.54, 12 / 2.54))
|
||||
ax.bar(np.arange(4), pct_agon_categorie.mean(0))
|
||||
ax.errorbar(np.arange(4), pct_agon_categorie.mean(0), yerr=pct_agon_categorie.std(0), fmt='', color='k', linestyle='None')
|
||||
ax.set_xticks(np.arange(4))
|
||||
ax.set_xticklabels([r'rise$_{pre}$ + chirp$_{end}$', r'rise$_{pre}$ + _', r'_ + chirp$_{end}$', '_ + _'])
|
||||
plt.show()
|
||||
|
||||
pass
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user