597 lines
19 KiB
Python
597 lines
19 KiB
Python
from __future__ import print_function
|
|
import os
|
|
import sys
|
|
import glob
|
|
import datetime
|
|
from shutil import copyfile
|
|
try:
|
|
import RPi.GPIO as GPIO
|
|
except:
|
|
pass
|
|
import subprocess
|
|
import numpy as np
|
|
import threading
|
|
import multiprocessing as mp
|
|
from time import sleep, time
|
|
from IPython import embed
|
|
from uldaq import (get_daq_device_inventory, DaqDevice, AInScanFlag, ScanStatus,
|
|
ScanOption, create_float_buffer, InterfaceType, AiInputMode)
|
|
|
|
|
|
def GPIO_setup(LED1_pin, LED2_pin, LED_out_pin, Button1_pin, Button2_pin, power_controll_pin):
|
|
# LED output pins
|
|
GPIO.setmode(GPIO.BOARD)
|
|
|
|
GPIO.setup(LED1_pin, GPIO.OUT) # 1
|
|
GPIO.output(LED1_pin, GPIO.LOW)
|
|
GPIO.setup(LED2_pin, GPIO.OUT) # 2
|
|
GPIO.output(LED2_pin, GPIO.HIGH)
|
|
|
|
if LED_out_pin != None:
|
|
GPIO.setup(LED_out_pin, GPIO.OUT)
|
|
GPIO.output(LED_out_pin, GPIO.LOW)
|
|
|
|
LED_status = [False, True, False]
|
|
else:
|
|
LED_status = [False, True]
|
|
|
|
# switch controlled input
|
|
# GPIO.setup(Button1_pin, GPIO.IN)
|
|
GPIO.setup(power_controll_pin, GPIO.IN)
|
|
|
|
GPIO.setup(Button1_pin, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)
|
|
GPIO.setup(Button2_pin, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)
|
|
|
|
return LED_status
|
|
|
|
|
|
def read_cfg(cfg_file, now, start_time=None, init_read=False):
|
|
cfg_f = open(cfg_file, 'r+')
|
|
cfg = cfg_f.readlines()
|
|
|
|
### read cfg information ###
|
|
if init_read:
|
|
for line in cfg:
|
|
if "PathFormat" in line:
|
|
path_format = ':'.join(line.split(':')[1:]).strip().replace('"', '').replace("'", "")
|
|
cfg_f.close()
|
|
return path_format
|
|
else:
|
|
for line in cfg:
|
|
if 'Columns1' in line:
|
|
n_cols = int(line.split(':')[1].strip())
|
|
elif 'Rows1' in line:
|
|
n_rows = int(line.split(':')[1].strip())
|
|
elif 'Extra1' in line:
|
|
n_extra = int(line.split(':')[1].strip())
|
|
elif "AISampleRate" in line:
|
|
samplerate = int(float(line.split(':')[-1].strip().replace('kHz', '')) * 1000)
|
|
elif "AIMaxVolt" in line:
|
|
max_v = float(line.split(':')[1].strip().replace('mV', ''))
|
|
elif 'Gain' in line:
|
|
gain = int(line.split(':')[1].strip())
|
|
channels = n_rows * n_cols + n_extra
|
|
|
|
### alter information and re-write ###
|
|
for enu, line in enumerate(cfg):
|
|
if "StartDate" in line:
|
|
cfg[enu] = (' StartDate : %s\n' % now.strftime('%Y-%m-%d'))
|
|
elif "StartTime" in line:
|
|
if start_time == None:
|
|
cfg[enu] = (' StartTime : %s\n' % (now.strftime('%H:%M:%S') + now.strftime(".%f")[:4]))
|
|
else:
|
|
cfg[enu] = (' StartTime : %s\n' % ('%2.f:%2.f:00' % (start_time[0], start_time[1])))
|
|
cfg_f.close()
|
|
|
|
cfg_f = open(cfg_file, 'w+')
|
|
for line in cfg:
|
|
cfg_f.write(line)
|
|
cfg_f.close()
|
|
|
|
return channels, samplerate, n_cols, n_rows, max_v, gain
|
|
|
|
|
|
def clock_process(end_clock, run_led_pin, sync_led_pin, w1_bus_path, temp_f, led_f):
|
|
t0 = time()
|
|
run_led_interval = 2
|
|
sync_led_interval = 1
|
|
temp_interval = 300
|
|
next_t_t = 0
|
|
next_l_t = 0
|
|
|
|
print("\nDatetime: %.0f:%0f o'clock" % (datetime.datetime.now().hour, datetime.datetime.now().minute))
|
|
print("Terminate: %.0f:%0f o'clock" % (end_clock[0], end_clock[1]))
|
|
|
|
while True:
|
|
if datetime.datetime.now().hour >= end_clock[0] and datetime.datetime.now().minute >= end_clock[1]:
|
|
print('\nEnd time reached ...')
|
|
break
|
|
if (time() - t0) % temp_interval <= 0.1:
|
|
#GPIO.output(run_led_pin, GPIO.HIGH)
|
|
GPIO.output(sync_led_pin, GPIO.HIGH)
|
|
sleep(0.1)
|
|
#GPIO.output(run_led_pin, GPIO.LOW)
|
|
GPIO.output(sync_led_pin, GPIO.LOW)
|
|
|
|
w1_f = open(w1_bus_path, 'r')
|
|
w1_file = w1_f.readlines()
|
|
for line in w1_file:
|
|
if 't=' in line:
|
|
temp = float((line.split('=')[-1].strip())) / 1000
|
|
temp_f.write('%6.0f; %7.3f\n' % (next_t_t, temp))
|
|
temp_f.flush()
|
|
break
|
|
w1_f.close()
|
|
next_t_t += temp_interval
|
|
|
|
elif (time() - t0) % run_led_interval <= 0.1:
|
|
#GPIO.output(run_led_pin, GPIO.HIGH)
|
|
GPIO.output(sync_led_pin, GPIO.HIGH)
|
|
sleep(0.1)
|
|
#GPIO.output(run_led_pin, GPIO.LOW)
|
|
GPIO.output(sync_led_pin, GPIO.LOW)
|
|
|
|
elif (time() - t0) % sync_led_interval <= 0.1:
|
|
GPIO.output(sync_led_pin, GPIO.HIGH)
|
|
sleep(0.1)
|
|
GPIO.output(sync_led_pin, GPIO.LOW)
|
|
|
|
if led_f != None:
|
|
led_f.write('%.4f' % (next_l_t))
|
|
led_f.flush()
|
|
next_l_t += sync_led_interval
|
|
else:
|
|
pass
|
|
|
|
|
|
def save_process(q, f, gain):
|
|
while True:
|
|
if q.empty():
|
|
pass
|
|
elif q.full():
|
|
print('\n!!! Queue full !!!')
|
|
else:
|
|
Cdata = q.get()
|
|
# print(Cdata[:10])
|
|
Cdata.tofile(f)
|
|
f.flush()
|
|
|
|
|
|
def save_controll(q, pin):
|
|
while True:
|
|
if q.empty():
|
|
sleep(0.1)
|
|
pass
|
|
else:
|
|
trigger = q.get()
|
|
GPIO.output(pin, GPIO.HIGH)
|
|
sleep(0.5)
|
|
GPIO.output(pin, GPIO.LOW)
|
|
|
|
|
|
def main():
|
|
LED1_pin = 11
|
|
LED2_pin = 13
|
|
LED_out_pin = 35
|
|
Button1_pin = 16
|
|
Button2_pin = 18
|
|
power_controll_pin = 37
|
|
|
|
LED_status = GPIO_setup(LED1_pin, LED2_pin, LED_out_pin, Button1_pin, Button2_pin, power_controll_pin)
|
|
|
|
# switch LEDs off
|
|
GPIO.output(LED1_pin, GPIO.LOW)
|
|
LED_status[0] = False
|
|
GPIO.output(LED2_pin, GPIO.LOW)
|
|
LED_status[1] = False
|
|
|
|
last_button_2_t = time()
|
|
|
|
now = datetime.datetime.now()
|
|
|
|
# defined start and end time
|
|
valid = False
|
|
if len(sys.argv) == 3:
|
|
if len(sys.argv[1]) == 4 and len(sys.argv[2]) == 4:
|
|
start_clock = [int(sys.argv[1][:2]), int(sys.argv[1][2:])]
|
|
end_clock = [int(sys.argv[2][:2]), int(sys.argv[2][2:])]
|
|
valid = True
|
|
if not valid:
|
|
start_clock = [10, 0]
|
|
end_clock = [16, 0]
|
|
|
|
# get init cfg
|
|
if os.path.exists('/media/pi/data1'):
|
|
init_path = '/media/pi/data1'
|
|
elif os.path.exists('/home/raab/data/rasp_test'):
|
|
init_path = '/home/raab/data/rasp_test'
|
|
else:
|
|
for i in range(10):
|
|
GPIO.output(LED1_pin, GPIO.HIGH)
|
|
sleep(0.5)
|
|
GPIO.output(LED1_pin, GPIO.LOW)
|
|
sleep(0.5)
|
|
print('got no path')
|
|
quit()
|
|
|
|
|
|
init_cfgfile = os.path.join(init_path, 'fishgrid.cfg')
|
|
if os.path.exists(init_cfgfile):
|
|
path_format = read_cfg(init_cfgfile, now, init_read = True)
|
|
else:
|
|
print('cfg file missing !!!')
|
|
quit()
|
|
|
|
# create save folder and copy cfg file
|
|
|
|
start_str = ('%2.f_%2.f' % (start_clock[0], start_clock[1])).replace(' ', '0')
|
|
path = os.path.join(init_path, now.strftime(path_format[:-9]) + start_str) #ToDo: Edit here
|
|
|
|
if not os.path.exists(path):
|
|
os.makedirs(path)
|
|
copyfile(os.path.join(os.path.split(path)[0], 'fishgrid.cfg'), os.path.join(path, 'fishgrid.cfg'))
|
|
cfgfile = os.path.join(path, 'fishgrid.cfg')
|
|
|
|
# read and edit config file
|
|
channels, rate, n_cols, n_rows, max_v, gain = read_cfg(cfgfile, now, start_clock)
|
|
file = os.path.join(path, 'traces-grid1.raw')
|
|
temp_file = os.path.join(path, 'temperatures.csv')
|
|
led_file = os.path.join(path, 'led_times.csv')
|
|
led_file2 = os.path.join(path, 'led_idxs.csv')
|
|
|
|
# find w1bus for temp
|
|
record_temp = False
|
|
temp_f = None
|
|
w1_bus_path = glob.glob('/sys/bus/w1/devices/28*/w1_slave')
|
|
if len(w1_bus_path) > 0:
|
|
w1_bus_path = w1_bus_path[0]
|
|
record_temp = True
|
|
temp_f = open(temp_file, 'w')
|
|
temp_f.write('%-6s; %-7s\n' % ('time/s', 'T/C'))
|
|
|
|
f = open(file, 'wb')
|
|
led_f = open(led_file, 'w')
|
|
led_f2 = open(led_file2, 'w')
|
|
|
|
# f.close()
|
|
|
|
# DAQ setup
|
|
|
|
if True:
|
|
status = ScanStatus.IDLE
|
|
|
|
descriptor_index = 0
|
|
range_index = 0
|
|
|
|
interface_type = InterfaceType.USB
|
|
low_channel = 0
|
|
high_channel = channels - 1
|
|
|
|
buffer_sec = 20
|
|
samples_per_channel = rate * buffer_sec # * channels = Buffer size
|
|
buffer_size = samples_per_channel * channels
|
|
print('\nChannels: %.0f' % channels)
|
|
# rate = 20000
|
|
scan_options = ScanOption.CONTINUOUS
|
|
flags = AInScanFlag.DEFAULT
|
|
|
|
# Get descriptors for all of the available DAQ devices.
|
|
devices = get_daq_device_inventory(interface_type)
|
|
number_of_devices = len(devices)
|
|
if number_of_devices == 0:
|
|
raise Exception('Error: No DAQ devices found')
|
|
|
|
print('Found', number_of_devices, 'DAQ device(s):')
|
|
for i in range(number_of_devices):
|
|
print(' ', devices[i].product_name, ' (', devices[i].unique_id, ')', sep='')
|
|
|
|
# Create the DAQ device object associated with the specified descriptor index.
|
|
daq_device = None
|
|
daq_device = DaqDevice(devices[descriptor_index])
|
|
|
|
# Get the AiDevice object and verify that it is valid.
|
|
ai_device = None
|
|
ai_device = daq_device.get_ai_device()
|
|
if ai_device is None:
|
|
raise Exception('Error: The DAQ device does not support analog input')
|
|
|
|
# Verify that the specified device supports hardware pacing for analog input.
|
|
ai_info = ai_device.get_info()
|
|
if not ai_info.has_pacer():
|
|
raise Exception('\nError: The specified DAQ device does not support hardware paced analog input')
|
|
|
|
# Establish a connection to the DAQ device.
|
|
descriptor = daq_device.get_descriptor()
|
|
print('\nConnecting to', descriptor.dev_string, '- please wait...')
|
|
daq_device.connect()
|
|
|
|
# The default input mode is SINGLE_ENDED.
|
|
input_mode = AiInputMode.SINGLE_ENDED
|
|
# If SINGLE_ENDED input mode is not supported, set to DIFFERENTIAL.
|
|
if ai_info.get_num_chans_by_mode(AiInputMode.SINGLE_ENDED) <= 0:
|
|
input_mode = AiInputMode.DIFFERENTIAL
|
|
|
|
# Get the number of channels and validate the high channel number.
|
|
number_of_channels = ai_info.get_num_chans_by_mode(input_mode)
|
|
if high_channel >= number_of_channels:
|
|
high_channel = number_of_channels - 1
|
|
channel_count = high_channel - low_channel + 1
|
|
|
|
# Get a list of supported ranges and validate the range index.
|
|
ranges = ai_info.get_ranges(input_mode)
|
|
int_ranges = []
|
|
for r in ranges:
|
|
int_ranges.append(int(r.name.replace('BIP', '').replace('VOLTS', '')))
|
|
|
|
for idx in np.argsort(int_ranges):
|
|
if max_v * gain / 1000 <= int_ranges[idx]:
|
|
range_index = idx
|
|
break
|
|
print(ranges[range_index])
|
|
|
|
GPIO.output(LED1_pin, GPIO.HIGH)
|
|
LED_status[0] = True
|
|
GPIO.output(LED2_pin, GPIO.LOW)
|
|
LED_status[1] = False
|
|
sleep(.5)
|
|
|
|
GPIO.output(LED1_pin, GPIO.LOW)
|
|
LED_status[0] = False
|
|
GPIO.output(LED2_pin, GPIO.HIGH)
|
|
LED_status[1] = True
|
|
sleep(.5)
|
|
|
|
GPIO.output(LED1_pin, GPIO.HIGH)
|
|
LED_status[0] = True
|
|
GPIO.output(LED2_pin, GPIO.LOW)
|
|
LED_status[1] = False
|
|
sleep(.5)
|
|
|
|
GPIO.output(LED1_pin, GPIO.LOW)
|
|
LED_status[0] = False
|
|
GPIO.output(LED2_pin, GPIO.HIGH)
|
|
LED_status[1] = True
|
|
sleep(.5)
|
|
|
|
GPIO.output(LED2_pin, GPIO.LOW)
|
|
LED_status[1] = False
|
|
|
|
|
|
|
|
########################## ToDo: continue here !!!
|
|
|
|
|
|
disp_eth_power = True
|
|
stop_flag = False
|
|
|
|
while True:
|
|
if datetime.datetime.now().hour == start_clock[0] and datetime.datetime.now().minute == start_clock[1]:
|
|
break
|
|
elif datetime.datetime.now().hour * 60 + datetime.datetime.now().minute >= start_clock[0] * 60 + start_clock[1]:
|
|
# elif datetime.datetime.now().hour >= start_clock[0] and datetime.datetime.now().minute >= start_clock[1]:
|
|
h = datetime.datetime.now().hour
|
|
m = datetime.datetime.now().minute
|
|
start_clock = [h, m]
|
|
# end_clock = [h + 6, m]
|
|
|
|
|
|
GPIO.output(LED2_pin, GPIO.HIGH)
|
|
LED_status[1] = True
|
|
|
|
#clock_thread = threading.Thread(target=clock_controll, args=(end_clock, LED1_pin, LED_out_pin, w1_bus_path, temp_f, led_f, lambda: stop_flag))
|
|
#clock_thread.start()
|
|
|
|
# clock_thread = mp.Process(target=clock_process, args=(end_clock, LED1_pin, LED_out_pin, w1_bus_path, temp_f, led_f))
|
|
# clock_thread.start()
|
|
#
|
|
# q = mp.Queue()
|
|
# # save_thread = mp.Process(target=save_process, args=(q, f, gain))
|
|
# # save_thread.start()
|
|
# save_thread = mp.Process(target=save_controll, args=(q, LED1_pin))
|
|
# save_thread.start()
|
|
|
|
print('\nRecording started.')
|
|
data = create_float_buffer(channel_count, samples_per_channel)
|
|
print('----')
|
|
print('Buffer size: %.0fn; %.0fsec' % (len(data), buffer_sec))
|
|
print('Channels: %.0f' % channel_count)
|
|
print('Samples per channel: %.0f' % samples_per_channel)
|
|
print('----')
|
|
|
|
LED_t0 = time()
|
|
LED_t_interval = 5
|
|
|
|
sync_LED_t_interval = 1
|
|
|
|
temp_t0 = time()
|
|
next_temp_t = 0
|
|
temp_interval = 300 # sec --> 5 min
|
|
|
|
next_l_t = 0
|
|
|
|
disp_eth_power = True
|
|
|
|
rate = ai_device.a_in_scan(low_channel, high_channel, input_mode, ranges[range_index], samples_per_channel,
|
|
rate, scan_options, flags, data)
|
|
|
|
|
|
status, transfer_status = ai_device.get_scan_status()
|
|
|
|
last_idx = 0
|
|
|
|
# while GPIO.input(Button1_pin) == GPIO.LOW and clock_thread.is_alive():
|
|
#while GPIO.input(Button1_pin) == GPIO.LOW and datetime.datetime.now().hour * 60 + datetime.datetime.now().minute < end_clock[0] * 60 + end_clock[1]:
|
|
buffer_no = 0
|
|
|
|
while GPIO.input(Button1_pin) == GPIO.LOW:
|
|
|
|
if GPIO.input(Button2_pin) == GPIO.HIGH:
|
|
if (time() - last_button_2_t) > 5:
|
|
if disp_eth_power == True:
|
|
subprocess.run(['tvservice', '-o'])
|
|
subprocess.run(['vcgencmd', 'display_power', '0'])#
|
|
|
|
subprocess.run(['sudo', 'ip', 'link', 'set', 'eth0', 'down'])
|
|
GPIO.output(LED2_pin, GPIO.LOW)
|
|
disp_eth_power = False
|
|
last_button_2_t = time()
|
|
|
|
elif disp_eth_power == False:
|
|
subprocess.run(['tvservice', '-p'])
|
|
subprocess.run(['vcgencmd', 'display_power', '1'])
|
|
subprocess.run(['sudo', '/bin/chvt', '6'])
|
|
subprocess.run(['sudo', '/bin/chvt', '7'])#
|
|
|
|
subprocess.run(['sudo', 'ip', 'link', 'set', 'eth0', 'up'])
|
|
GPIO.output(LED2_pin, GPIO.HIGH)
|
|
disp_eth_power = True
|
|
last_button_2_t = time()
|
|
|
|
#################
|
|
if record_temp == True:
|
|
if time() - temp_t0 > next_temp_t:
|
|
w1_f = open(w1_bus_path, 'r')
|
|
w1_file = w1_f.readlines()
|
|
for line in w1_file:
|
|
if 't=' in line:
|
|
temp = float((line.split('=')[-1].strip())) / 1000
|
|
temp_f.write('%6.0f; %7.3f\n' % (next_temp_t, temp))
|
|
temp_f.flush()
|
|
break
|
|
|
|
w1_f.close()
|
|
next_temp_t += temp_interval
|
|
|
|
# blinking LED (run)
|
|
if (time() - LED_t0) % LED_t_interval < .5 and LED_status[0] == False:
|
|
# if (time() - LED_t0) % LED_t_interval < .5:
|
|
LED_status[0] = True
|
|
GPIO.output(LED1_pin, GPIO.HIGH)
|
|
elif (time() - LED_t0) % LED_t_interval >= .5 and LED_status[0] == True:
|
|
# elif (time() - LED_t0) % LED_t_interval >= .5:
|
|
LED_status[0] = False
|
|
GPIO.output(LED1_pin, GPIO.LOW)
|
|
else:
|
|
pass
|
|
|
|
if (time() - LED_t0) % sync_LED_t_interval < .1 and LED_status[2] == False:
|
|
if led_f != None:
|
|
Cidx = int((buffer_size * buffer_no + last_idx) / channels)
|
|
led_f.write('%.4f\n' % (time()-LED_t0))
|
|
led_f.flush()
|
|
led_f2.write('%.0f\n' % Cidx)
|
|
led_f2.flush()
|
|
|
|
LED_status[2] = True
|
|
GPIO.output(LED_out_pin, GPIO.HIGH)
|
|
|
|
elif (time() - LED_t0) % sync_LED_t_interval >= .1 and LED_status[2] == True:
|
|
LED_status[2] = False
|
|
GPIO.output(LED_out_pin, GPIO.LOW)
|
|
else:
|
|
pass
|
|
# if time() - LED_t < .1 and LED_status[0] == False:
|
|
# LED_status[0] = True
|
|
# GPIO.output(LED1_pin, GPIO.HIGH)
|
|
# if time() - LED_t >= .1 and LED_status[0] == True:
|
|
# LED_status[0] = False
|
|
# GPIO.output(LED1_pin, GPIO.LOW)
|
|
# if time() - LED_t >= LED_t_interval:
|
|
# LED_t = time()
|
|
|
|
##########################################
|
|
# Get the status of the background operation
|
|
status, transfer_status = ai_device.get_scan_status()
|
|
|
|
index = transfer_status.current_index
|
|
# print(index)
|
|
|
|
|
|
### the new way ###
|
|
# if index == -1:
|
|
# continue
|
|
#
|
|
# if index > save_range[0] and index <= save_range[1]:
|
|
# pass
|
|
#
|
|
# else:
|
|
# GPIO.output(LED1_pin, GPIO.HIGH)
|
|
# dt = time() - cont_t
|
|
# cont_t = time()
|
|
#
|
|
# Cdata = np.copy(np.array(data[save_range[0]:save_range[1]], dtype=np.float32) / gain)
|
|
# q.put(Cdata)
|
|
#
|
|
# save_ranges = np.roll(save_ranges, -1, axis=0)
|
|
# save_range = save_ranges[0]
|
|
#
|
|
#
|
|
# GPIO.output(LED1_pin, GPIO.LOW)
|
|
###---###
|
|
|
|
### the old way ###
|
|
if index < 0 or index == last_idx:
|
|
continue
|
|
|
|
if index > last_idx:
|
|
(np.array(data[last_idx:index], dtype=np.float32) / gain).tofile(f)
|
|
|
|
else:
|
|
(np.array(data[last_idx:], dtype=np.float32) / gain).tofile(f)
|
|
if datetime.datetime.now().hour * 60 + datetime.datetime.now().minute >= end_clock[0] * 60 + end_clock[1]:
|
|
f.flush()
|
|
GPIO.output(LED1_pin, GPIO.LOW)
|
|
GPIO.output(LED_out_pin, GPIO.LOW)
|
|
break
|
|
|
|
(np.array(data[:index], dtype=np.float32) / gain).tofile(f)
|
|
f.flush()
|
|
|
|
buffer_no += 1
|
|
last_idx = index
|
|
|
|
###---###
|
|
|
|
#stop_flag = True
|
|
#clock_thread.join()
|
|
# print('\nEmpty Queue')
|
|
# while not q.empty():
|
|
# sleep(0.01)
|
|
# clock_thread.terminate()
|
|
# save_thread.terminate()
|
|
# save_thread.terminate()
|
|
print('\nDone!')
|
|
|
|
f.close()
|
|
temp_f.close()
|
|
led_f.close()
|
|
|
|
GPIO.output(LED1_pin, GPIO.HIGH)
|
|
GPIO.output(LED2_pin, GPIO.HIGH)
|
|
|
|
sleep(2)
|
|
|
|
GPIO.output(LED1_pin, GPIO.LOW)
|
|
GPIO.output(LED2_pin, GPIO.LOW)
|
|
|
|
if daq_device:
|
|
# Stop the acquisition if it is still running.
|
|
if status == ScanStatus.RUNNING:
|
|
ai_device.scan_stop()
|
|
if daq_device.is_connected():
|
|
daq_device.disconnect()
|
|
daq_device.release()
|
|
|
|
if disp_eth_power == False:
|
|
subprocess.run(['tvservice', '-p'])
|
|
subprocess.run(['vcgencmd', 'display_power', '1'])
|
|
subprocess.run(['sudo', '/bin/chvt', '6'])
|
|
subprocess.run(['sudo', '/bin/chvt', '7'])
|
|
|
|
# subprocess.run(['sudo', 'ip', 'link', 'set', 'eth0', 'up'])
|
|
GPIO.cleanup()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|