GP2023_chirp_detection/code/plot_chirp_bodylegth.py

87 lines
3.0 KiB
Python

import numpy as np
import os
import numpy as np
import matplotlib.pyplot as plt
from thunderfish.powerspectrum import decibel
from IPython import embed
from pandas import read_csv
from modules.logger import makeLogger
from modules.plotstyle import PlotStyle
from modules.behaviour_handling import Behavior, correct_chasing_events
ps = PlotStyle()
logger = makeLogger(__name__)
def main(datapath: str):
foldernames = [datapath + x + '/' for x in os.listdir(datapath) if os.path.isdir(datapath+x)]
path_to_csv = ('/').join(foldernames[0].split('/')[:-2]) + '/order_meta.csv'
meta_id = read_csv(path_to_csv)
meta_id['recording'] = meta_id['recording'].str[1:-1]
chirps_winner = []
chirps_loser = []
for foldername in foldernames:
# behabvior is pandas dataframe with all the data
if foldername == '../data/mount_data/2020-05-12-10_00/':
continue
bh = Behavior(foldername)
# chirps are not sorted in time (presumably due to prior groupings)
# get and sort chirps and corresponding fish_ids of the chirps
category = bh.behavior
timestamps = bh.start_s
# Correct for doubles in chasing on- and offsets to get the right on-/offset pairs
# Get rid of tracking faults (two onsets or two offsets after another)
category, timestamps = correct_chasing_events(category, timestamps)
folder_name = foldername.split('/')[-2]
winner_row = meta_id[meta_id['recording'] == folder_name]
winner = winner_row['winner'].values[0].astype(int)
winner_fish1 = winner_row['fish1'].values[0].astype(int)
winner_fish2 = winner_row['fish2'].values[0].astype(int)
if winner == winner_fish1:
winner_fish_id = winner_row['rec_id1'].values[0]
loser_fish_id = winner_row['rec_id2'].values[0]
elif winner == winner_fish2:
winner_fish_id = winner_row['rec_id2'].values[0]
loser_fish_id = winner_row['rec_id1'].values[0]
else:
continue
print(foldername)
all_fish_ids = np.unique(bh.chirps_ids)
chirp_loser = len(bh.chirps[bh.chirps_ids == loser_fish_id])
chirp_winner = len(bh.chirps[bh.chirps_ids == winner_fish_id])
chirps_winner.append(chirp_winner)
chirps_loser.append(chirp_loser)
fish1_id = all_fish_ids[0]
fish2_id = all_fish_ids[1]
print(winner_fish_id)
print(all_fish_ids)
fig, ax = plt.subplots()
ax.boxplot([chirps_winner, chirps_loser], showfliers=False)
ax.scatter(np.ones(len(chirps_winner)), chirps_winner, color='r')
ax.scatter(np.ones(len(chirps_loser))*2, chirps_loser, color='r')
ax.set_xticklabels(['winner', 'loser'])
for w, l in zip(chirps_winner, chirps_loser):
ax.plot([1,2], [w,l], color='r', alpha=0.5, linewidth=0.5)
ax.set_ylabel('Chirpscounts [n]')
plt.show()
if __name__ == '__main__':
# Path to the data
datapath = '../data/mount_data/'
main(datapath)