GP2023_chirp_detection/code/behavior.py

187 lines
6.3 KiB
Python

import os
import numpy as np
import matplotlib.pyplot as plt
from IPython import embed
from pandas import read_csv
class Behavior:
"""Load behavior data from csv file as class attributes
Attributes
----------
behavior: 0: chasing onset, 1: chasing offset, 2: physical contact
behavior_type:
behavioral_category:
comment_start:
comment_stop:
dataframe: pandas dataframe with all the data
duration_s:
media_file:
observation_date:
observation_id:
start_s: start time of the event in seconds
stop_s: stop time of the event in seconds
total_length:
"""
def __init__(self, folder_path: str) -> None:
LED_on_time_BORIS = np.load(os.path.join(folder_path, 'LED_on_time.npy'), allow_pickle=True)
self.time = np.load(os.path.join(folder_path, "times.npy"), allow_pickle=True)
csv_filename = [f for f in os.listdir(folder_path) if f.endswith('.csv')][0] # check if there are more than one csv file
self.dataframe = read_csv(os.path.join(folder_path, csv_filename))
self.chirps = np.load(os.path.join(folder_path, 'chirps.npy'), allow_pickle=True)
self.chirps_ids = np.load(os.path.join(folder_path, 'chirps_ids.npy'), allow_pickle=True)
for k, key in enumerate(self.dataframe.keys()):
key = key.lower()
if ' ' in key:
key = key.replace(' ', '_')
if '(' in key:
key = key.replace('(', '')
key = key.replace(')', '')
setattr(self, key, np.array(self.dataframe[self.dataframe.keys()[k]]))
last_LED_t_BORIS = LED_on_time_BORIS[-1]
real_time_range = self.time[-1] - self.time[0]
factor = 1.034141
shift = last_LED_t_BORIS - real_time_range * factor
self.start_s = (self.start_s - shift) / factor
self.stop_s = (self.stop_s - shift) / factor
"""
1 - chasing onset
2 - chasing offset
3 - physical contact event
temporal encpding needs to be corrected ... not exactly 25FPS.
### correspinding python code ###
factor = 1.034141
LED_on_time_BORIS = np.load(os.path.join(folder_path, 'LED_on_time.npy'), allow_pickle=True)
last_LED_t_BORIS = LED_on_time_BORIS[-1]
real_time_range = times[-1] - times[0]
shift = last_LED_t_BORIS - real_time_range * factor
data = pd.read_csv(os.path.join(folder_path, file[1:-7] + '.csv'))
boris_times = data['Start (s)']
data_times = []
for Cevent_t in boris_times:
Cevent_boris_times = (Cevent_t - shift) / factor
data_times.append(Cevent_boris_times)
data_times = np.array(data_times)
behavior = data['Behavior']
"""
def correct_chasing_events(
category: np.ndarray,
timestamps: np.ndarray
) -> tuple[np.ndarray, np.ndarray]:
onset_ids = np.arange(
len(category))[category == 0]
offset_ids = np.arange(
len(category))[category == 1]
# Check whether on- or offset is longer and calculate length difference
if len(onset_ids) > len(offset_ids):
len_diff = len(onset_ids) - len(offset_ids)
longer_array = onset_ids
shorter_array = offset_ids
elif len(onset_ids) < len(offset_ids):
len_diff = len(offset_ids) - len(onset_ids)
longer_array = offset_ids
shorter_array = onset_ids
elif len(onset_ids) == len(offset_ids):
print('Chasing events are equal')
return category, timestamps
# Correct the wrong chasing events; delete double events
wrong_ids = []
for i in range(len(longer_array)-len_diff+1):
if (shorter_array[i] > longer_array[i]) & (shorter_array[i] < longer_array[i+1]):
pass
else:
wrong_ids.append(longer_array[i])
longer_array = np.delete(longer_array, i)
category = np.delete(
category, wrong_ids)
timestamps = np.delete(
timestamps, wrong_ids)
return category, timestamps
def main(datapath: str):
# behavior is pandas dataframe with all the data
bh = Behavior(datapath)
# chirps are not sorted in time (presumably due to prior groupings)
# get and sort chirps and corresponding fish_ids of the chirps
chirps = bh.chirps[np.argsort(bh.chirps)]
chirps_ids = bh.chirps_ids[np.argsort(bh.chirps)]
category = bh.behavior
timestamps = bh.start_s
# Correct for
category, timestamps = correct_chasing_events(category, timestamps)
# split categories
chasing_onset = timestamps[category == 0]
chasing_offset = timestamps[category == 1]
physical_contact = timestamps[category == 2]
##### TODO Physical contact-triggered chirps (PTC) mit Rasterplot #####
# Wahrscheinlichkeit von Phys auf Ch und vice versa
# Chasing-triggered chirps (CTC) mit Rasterplot
# Wahrscheinlichkeit von Chase auf Ch und vice versa
# First overview plot
fig1, ax1 = plt.subplots()
ax1.scatter(chirps, np.ones_like(chirps), marker='*', color='royalblue', label='Chirps')
ax1.scatter(chasing_onset, np.ones_like(chasing_onset)*2, marker='.', color='forestgreen', label='Chasing onset')
ax1.scatter(chasing_offset, np.ones_like(chasing_offset)*2.5, marker='.', color='firebrick', label='Chasing offset')
ax1.scatter(physical_contact, np.ones_like(physical_contact)*3, marker='x', color='black', label='Physical contact')
plt.legend()
# plt.show()
# Get fish ids
all_fish_ids = np.unique(chirps_ids)
# Associate chirps to inidividual fish
fish1 = chirps[chirps_ids == all_fish_ids[0]]
fish2 = chirps[chirps_ids == all_fish_ids[1]]
fish = [len(fish1), len(fish2)]
#### Chirp counts per fish general #####
fig2, ax2 = plt.subplots()
x = ['Fish1', 'Fish2']
width = 0.35
ax2.bar(x, fish, width=width)
ax2.set_ylabel('Chirp count')
# plt.show()
##### Count chirps emitted during chasing events and chirps emitted out of chasing events #####
# Check if on- and offset are equal in length to get the right on-/offset pairs
# Get rid of tracking faults (two onsets or two offsets after another)
embed()
exit()
if __name__ == '__main__':
# Path to the data
datapath = '../data/mount_data/2020-05-13-10_00/'
main(datapath)