GP2023_chirp_detection/poster/main.tex
2023-01-26 15:31:59 +01:00

114 lines
4.4 KiB
TeX

\documentclass[25pt, a0paper, portrait, margin=0mm, innermargin=20mm,
blockverticalspace=2mm, colspace=20mm, subcolspace=0mm]{tikzposter} %Default values for poster format options.
\input{packages}
\input{style}
\begin{document}
\renewcommand{\baselinestretch}{1}
\title{\parbox{1500pt}{Bypassing time-frequency uncertainty in the detection of transient communication signals in weakly electric fish}}
\author{Sina Prause, Alexander Wendt, and Patrick Weygoldt}
\institute{Supervised by Till Raab \& Jan Benda, Neuroethology Lab, University of Tuebingen}
\usetitlestyle[]{sampletitle}
\maketitle
\renewcommand{\baselinestretch}{1.4}
\begin{columns}
\column{0.4}
\myblock[TranspBlock]{Introduction}{
\textbf{Chirps} are the most common communication signals in weakly electric fish. They are characterized by \textbf{short frequency excursions} and are emitted during various social contexts. It is nearly impossible to reliably \textbf{detect and assign} chirps in freely interacting fish using only a Fourier transform. To overcome these limits, we developed a new method of \textbf{dynamic feature extraction} and classification.
\vspace{1cm}
\begin{tikzfigure}[]
\label{griddrawing}
\includegraphics[width=\linewidth]{figs/introplot}
\end{tikzfigure}
}
\myblock[TranspBlock]{Chirp Detection Algorithm}{
\begin{tikzfigure}[]
\label{fig:alg1}
\includegraphics[width=0.9\linewidth]{figs/algorithm1}
\end{tikzfigure}
\vspace{2cm}
\begin{tikzfigure}[]
\label{fig:alg2}
\includegraphics[width=1\linewidth]{figs/algorithm}
\end{tikzfigure}
\vspace{0cm}
}
\column{0.6}
\myblock[TranspBlock]{Chirps in dyadic competitions (Data courtesy by Till Raab, 2020)}{
\vspace{-2.8cm}
\begin{tikzfigure}[]
\label{fig:example_b}
\includegraphics[width=\linewidth]{figs/timeline.pdf}
\end{tikzfigure}
\noindent
\begin{multicols}{2}
\begin{itemize}
% \setlength\itemsep{0.5em}
\item The electric behavior of two fish competing for one shelter were recorded in a light and dark condition.
\item Using additional IR-video recordings, the physical behavior was classified as one of two agonistic categories: Chasings and physical contacts.
\end{itemize}
\end{multicols}
\noindent
\begin{tikzfigure}[]
\label{fig:example_b}
\includegraphics[width=\linewidth]{figs/chirps_winner_loser.pdf}
\end{tikzfigure}
\noindent
\begin{itemize}
\item Losers tend to chirp more.
\item Larger fish usually win the competition. The smaller the size difference the more chirps are emitted.
\item EOD frequency has no effect on the competition outcome as well as the chirp rate.
\end{itemize}
}
\myblock[TranspBlock]{Chirp rate increases before chasing offset}{
\vspace{-1.2cm}
\begin{minipage}{0.6666\linewidth}
\begin{tikzfigure}[]
\includegraphics[width=1.1\linewidth]{figs/kde.pdf}
\end{tikzfigure}
\end{minipage}
\begin{minipage}{0.3333\linewidth}
\begin{tikzfigure}[]
\includegraphics[width=0.95\linewidth]{figs/chirps_in_chasing.pdf}
\end{tikzfigure}
\end{minipage}
\noindent
\begin{multicols}{2}
\begin{itemize}
\item The electric behavior of two fish competing for one shelter were recorded in a light and dark condition.
\item Using additional IR-video recordings, the physical behavior was classified as one of two agonistic categories: Chasings and physical contacts.
\end{itemize}
\end{multicols}
}
\myblock[GrayBlock]{Conclusion}{
\begin{itemize}
\setlength\itemsep{0.5em}
\item Our analysis is the first to indicate that \textit{A. leptorhynchus} uses long, diffuse and synchronized EOD$f$ signals to communicate in addition to chirps and rises.
\item The recorded fish do not exhibit jamming avoidance behavior while close during synchronous modulations.
\item Synchronous signals \textbf{initiate} spatio-temporal interactions.
\end{itemize}
\vspace{0.2cm}
}
\end{columns}
\node [above right,
text=white,
outer sep=45pt,
minimum width=\paperwidth,
align=center,
draw,
fill=boxes,
color=boxes] at (-43.6,-61) {
\textcolor{white}{
\normalsize Contact: \{name\}.\{surname\}@student.uni-tuebingen.de}};
\end{document}