36 lines
1.3 KiB
Python
36 lines
1.3 KiB
Python
from thunderfish.dataloader import DataLoader as open_data
|
|
from thunderfish.powerspectrum import spectrogram, decibel
|
|
from IPython import embed
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import os
|
|
from scipy.ndimage import gaussian_filter1d
|
|
from modules.filters import bandpass_filter
|
|
from modules.filehandling import LoadData
|
|
|
|
|
|
def main(folder):
|
|
data = LoadData(folder)
|
|
|
|
t0 = 3*60*60 + 6*60 + 43.5
|
|
dt = 60
|
|
data_oi = data.raw[t0 * data.raw_rate: (t0+dt)*data.raw_rate, :]
|
|
# good electrode
|
|
electrode = 10
|
|
data_oi = data_oi[:, electrode]
|
|
fig, axs = plt.subplots(2,1)
|
|
axs[0].plot( np.arange(data_oi.shape[0]) / data.raw_rate, data_oi)
|
|
for tr, track_id in enumerate(np.unique(data.ident[~np.isnan(data.ident)])):
|
|
rack_window_index = np.arange(len(data.idx))[
|
|
(data.ident == track_id) &
|
|
(data.time[data.idx] >= t0) &
|
|
(data.time[data.idx] <= (t0+dt))]
|
|
freq_fish = data.freq[rack_window_index]
|
|
axs[1].plot(np.arange(freq_fish.shape[0]) / data.raw_rate, freq_fish)
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main('/Users/acfw/Documents/uni_tuebingen/chirpdetection/GP2023_chirp_detection/data/2022-06-02-10_00/') |