185 lines
6.6 KiB
Python
185 lines
6.6 KiB
Python
import numpy as np
|
|
|
|
import os
|
|
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
|
|
from IPython import embed
|
|
from pandas import read_csv
|
|
from modules.logger import makeLogger
|
|
|
|
logger = makeLogger(__name__)
|
|
|
|
|
|
class Behavior:
|
|
"""Load behavior data from csv file as class attributes
|
|
Attributes
|
|
----------
|
|
behavior: 0: chasing onset, 1: chasing offset, 2: physical contact
|
|
behavior_type:
|
|
behavioral_category:
|
|
comment_start:
|
|
comment_stop:
|
|
dataframe: pandas dataframe with all the data
|
|
duration_s:
|
|
media_file:
|
|
observation_date:
|
|
observation_id:
|
|
start_s: start time of the event in seconds
|
|
stop_s: stop time of the event in seconds
|
|
total_length:
|
|
"""
|
|
|
|
def __init__(self, folder_path: str) -> None:
|
|
|
|
|
|
LED_on_time_BORIS = np.load(os.path.join(folder_path, 'LED_on_time.npy'), allow_pickle=True)
|
|
self.time = np.load(os.path.join(folder_path, "times.npy"), allow_pickle=True)
|
|
csv_filename = [f for f in os.listdir(folder_path) if f.endswith('.csv')][0]
|
|
logger.info(f'CSV file: {csv_filename}')
|
|
self.dataframe = read_csv(os.path.join(folder_path, csv_filename))
|
|
self.chirps = np.load(os.path.join(folder_path, 'chirps.npy'), allow_pickle=True)
|
|
self.chirps_ids = np.load(os.path.join(folder_path, 'chirps_ids.npy'), allow_pickle=True)
|
|
|
|
for k, key in enumerate(self.dataframe.keys()):
|
|
key = key.lower()
|
|
if ' ' in key:
|
|
key = key.replace(' ', '_')
|
|
if '(' in key:
|
|
key = key.replace('(', '')
|
|
key = key.replace(')', '')
|
|
setattr(self, key, np.array(self.dataframe[self.dataframe.keys()[k]]))
|
|
|
|
last_LED_t_BORIS = LED_on_time_BORIS[-1]
|
|
real_time_range = self.time[-1] - self.time[0]
|
|
factor = 1.034141
|
|
shift = last_LED_t_BORIS - real_time_range * factor
|
|
self.start_s = (self.start_s - shift) / factor
|
|
self.stop_s = (self.stop_s - shift) / factor
|
|
|
|
def correct_chasing_events(
|
|
category: np.ndarray,
|
|
timestamps: np.ndarray
|
|
) -> tuple[np.ndarray, np.ndarray]:
|
|
|
|
onset_ids = np.arange(
|
|
len(category))[category == 0]
|
|
offset_ids = np.arange(
|
|
len(category))[category == 1]
|
|
|
|
# Check whether on- or offset is longer and calculate length difference
|
|
if len(onset_ids) > len(offset_ids):
|
|
len_diff = len(onset_ids) - len(offset_ids)
|
|
longer_array = onset_ids
|
|
shorter_array = offset_ids
|
|
logger.info(f'Onsets are greater than offsets by {len_diff}')
|
|
elif len(onset_ids) < len(offset_ids):
|
|
len_diff = len(offset_ids) - len(onset_ids)
|
|
longer_array = offset_ids
|
|
shorter_array = onset_ids
|
|
logger.info(f'Offsets are greater than offsets by {len_diff}')
|
|
elif len(onset_ids) == len(offset_ids):
|
|
logger.info('Chasing events are equal')
|
|
return category, timestamps
|
|
|
|
|
|
# Correct the wrong chasing events; delete double events
|
|
wrong_ids = []
|
|
for i in range(len(longer_array)-(len_diff+1)):
|
|
if (shorter_array[i] > longer_array[i]) & (shorter_array[i] < longer_array[i+1]):
|
|
pass
|
|
else:
|
|
wrong_ids.append(longer_array[i])
|
|
longer_array = np.delete(longer_array, i)
|
|
|
|
category = np.delete(
|
|
category, wrong_ids)
|
|
timestamps = np.delete(
|
|
timestamps, wrong_ids)
|
|
return category, timestamps
|
|
|
|
|
|
|
|
def main(datapath: str):
|
|
# behabvior is pandas dataframe with all the data
|
|
bh = Behavior(datapath)
|
|
# chirps are not sorted in time (presumably due to prior groupings)
|
|
# get and sort chirps and corresponding fish_ids of the chirps
|
|
chirps = bh.chirps[np.argsort(bh.chirps)]
|
|
chirps_fish_ids = bh.chirps_ids[np.argsort(bh.chirps)]
|
|
category = bh.behavior
|
|
timestamps = bh.start_s
|
|
# Correct for doubles in chasing on- and offsets to get the right on-/offset pairs
|
|
# Get rid of tracking faults (two onsets or two offsets after another)
|
|
category, timestamps = correct_chasing_events(category, timestamps)
|
|
|
|
# split categories
|
|
chasing_onset = (timestamps[category == 0]/ 60) /60
|
|
chasing_offset = (timestamps[category == 1]/ 60) /60
|
|
physical_contact = (timestamps[category == 2] / 60) /60
|
|
|
|
all_fish_ids = np.unique(chirps_fish_ids)
|
|
# Associate chirps to inidividual fish
|
|
fish1 = (chirps[chirps_fish_ids == all_fish_ids[0]] / 60) /60
|
|
fish2 = (chirps[chirps_fish_ids == all_fish_ids[1]] / 60) /60
|
|
|
|
fig, ax = plt.subplots(4, 1, figsize=(10, 5), height_ratios=[0.5, 0.5, 0.5, 6], sharex=True)
|
|
# marker size
|
|
s = 200
|
|
ax[0].scatter(physical_contact, np.ones(len(physical_contact)), color='red', marker='|', s=s)
|
|
ax[1].scatter(chasing_onset, np.ones(len(chasing_onset)), color='blue', marker='|', s=s )
|
|
ax[1].scatter(chasing_offset, np.ones(len(chasing_offset)), color='green', marker='|', s=s)
|
|
ax[2].scatter(fish1, np.ones(len(fish1))-0.25, color='blue', marker='|', s=s)
|
|
ax[2].scatter(fish2, np.zeros(len(fish2))+0.25, color='green', marker='|', s=s)
|
|
ax[3].scatter(fish2, np.zeros(len(fish2))+0.25, color='green', marker='|', s=s)
|
|
|
|
# Hide grid lines
|
|
ax[0].grid(False)
|
|
ax[0].set_frame_on(False)
|
|
ax[0].set_xticks([])
|
|
ax[0].set_yticks([])
|
|
|
|
ax[1].grid(False)
|
|
ax[1].set_frame_on(False)
|
|
ax[1].set_xticks([])
|
|
ax[1].set_yticks([])
|
|
|
|
ax[2].grid(False)
|
|
ax[2].set_frame_on(False)
|
|
ax[2].set_yticks([])
|
|
ax[2].set_xticks([])
|
|
|
|
ax[3].axvspan(0, 3, 0, 5, facecolor='grey', alpha=0.5)
|
|
|
|
labelpad = 40
|
|
ax[0].set_ylabel('Physical contact', rotation=0, labelpad=labelpad)
|
|
ax[1].set_ylabel('Chasing events', rotation=0, labelpad=labelpad)
|
|
ax[2].set_ylabel('Chirps', rotation=0, labelpad=labelpad)
|
|
ax[3].set_ylabel('EODf')
|
|
|
|
ax[3].set_xlabel('Time [h]')
|
|
|
|
plt.show()
|
|
|
|
# plot chirps
|
|
|
|
|
|
"""
|
|
for track_id in np.unique(ident):
|
|
# window_index for time array in time window
|
|
window_index = np.arange(len(idx))[(ident == track_id) &
|
|
(time[idx] >= t0) &
|
|
(time[idx] <= (t0+dt))]
|
|
freq_temp = freq[window_index]
|
|
time_temp = time[idx[window_index]]
|
|
#mean_freq = np.mean(freq_temp)
|
|
#fdata = bandpass_filter(data_oi[:, track_id], data.samplerate, mean_freq-5, mean_freq+200)
|
|
ax.plot(time_temp - t0, freq_temp)
|
|
"""
|
|
|
|
if __name__ == '__main__':
|
|
# Path to the data
|
|
datapath = '../data/mount_data/2020-05-13-10_00/'
|
|
main(datapath)
|