99 lines
3.5 KiB
Python
99 lines
3.5 KiB
Python
import numpy as np
|
|
|
|
import os
|
|
|
|
import numpy as np
|
|
from IPython import embed
|
|
|
|
|
|
from pandas import read_csv
|
|
from modules.logger import makeLogger
|
|
|
|
|
|
logger = makeLogger(__name__)
|
|
|
|
|
|
class Behavior:
|
|
"""Load behavior data from csv file as class attributes
|
|
Attributes
|
|
----------
|
|
behavior: 0: chasing onset, 1: chasing offset, 2: physical contact
|
|
behavior_type:
|
|
behavioral_category:
|
|
comment_start:
|
|
comment_stop:
|
|
dataframe: pandas dataframe with all the data
|
|
duration_s:
|
|
media_file:
|
|
observation_date:
|
|
observation_id:
|
|
start_s: start time of the event in seconds
|
|
stop_s: stop time of the event in seconds
|
|
total_length:
|
|
"""
|
|
|
|
def __init__(self, folder_path: str) -> None:
|
|
|
|
LED_on_time_BORIS = np.load(os.path.join(folder_path, 'LED_on_time.npy'), allow_pickle=True)
|
|
|
|
csv_filename = [f for f in os.listdir(folder_path) if f.endswith('.csv')][0]
|
|
logger.info(f'CSV file: {csv_filename}')
|
|
self.dataframe = read_csv(os.path.join(folder_path, csv_filename))
|
|
|
|
self.chirps = np.load(os.path.join(folder_path, 'chirps.npy'), allow_pickle=True)
|
|
self.chirps_ids = np.load(os.path.join(folder_path, 'chirp_ids.npy'), allow_pickle=True)
|
|
|
|
self.ident = np.load(os.path.join(folder_path, 'ident_v.npy'), allow_pickle=True)
|
|
self.idx = np.load(os.path.join(folder_path, 'idx_v.npy'), allow_pickle=True)
|
|
self.freq = np.load(os.path.join(folder_path, 'fund_v.npy'), allow_pickle=True)
|
|
self.time = np.load(os.path.join(folder_path, "times.npy"), allow_pickle=True)
|
|
self.spec = np.load(os.path.join(folder_path, "spec.npy"), allow_pickle=True)
|
|
|
|
for k, key in enumerate(self.dataframe.keys()):
|
|
key = key.lower()
|
|
if ' ' in key:
|
|
key = key.replace(' ', '_')
|
|
if '(' in key:
|
|
key = key.replace('(', '')
|
|
key = key.replace(')', '')
|
|
setattr(self, key, np.array(self.dataframe[self.dataframe.keys()[k]]))
|
|
|
|
last_LED_t_BORIS = LED_on_time_BORIS[-1]
|
|
real_time_range = self.time[-1] - self.time[0]
|
|
factor = 1.034141
|
|
shift = last_LED_t_BORIS - real_time_range * factor
|
|
self.start_s = (self.start_s - shift) / factor
|
|
self.stop_s = (self.stop_s - shift) / factor
|
|
|
|
|
|
def correct_chasing_events(
|
|
category: np.ndarray,
|
|
timestamps: np.ndarray
|
|
) -> tuple[np.ndarray, np.ndarray]:
|
|
|
|
onset_ids = np.arange(
|
|
len(category))[category == 0]
|
|
offset_ids = np.arange(
|
|
len(category))[category == 1]
|
|
|
|
woring_bh = np.arange(len(category))[category!=2][:-1][np.diff(category[category!=2])==0]
|
|
if onset_ids[0] > offset_ids[0]:
|
|
offset_ids = np.delete(offset_ids, 0)
|
|
help_index = offset_ids[0]
|
|
woring_bh = np.append(woring_bh, help_index)
|
|
|
|
category = np.delete(category, woring_bh)
|
|
timestamps = np.delete(timestamps, woring_bh)
|
|
|
|
# Check whether on- or offset is longer and calculate length difference
|
|
if len(onset_ids) > len(offset_ids):
|
|
len_diff = len(onset_ids) - len(offset_ids)
|
|
logger.info(f'Onsets are greater than offsets by {len_diff}')
|
|
elif len(onset_ids) < len(offset_ids):
|
|
len_diff = len(offset_ids) - len(onset_ids)
|
|
logger.info(f'Offsets are greater than onsets by {len_diff}')
|
|
elif len(onset_ids) == len(offset_ids):
|
|
logger.info('Chasing events are equal')
|
|
|
|
|
|
return category, timestamps |