GP2023_chirp_detection/code/behavior.py
2023-01-19 17:30:04 +01:00

122 lines
4.2 KiB
Python

import os
import numpy as np
from IPython import embed
from pandas import read_csv
import matplotlib.pyplot as plt
class Behavior:
"""Load behavior data from csv file as class attributes
Attributes
----------
behavior: 0: chasing onset, 1: chasing offset, 2: physical contact
behavior_type:
behavioral_category:
comment_start:
comment_stop:
dataframe: pandas dataframe with all the data
duration_s:
media_file:
observation_date:
observation_id:
start_s: start time of the event in seconds
stop_s: stop time of the event in seconds
total_length:
"""
def __init__(self, folder_path: str) -> None:
LED_on_time_BORIS = np.load(os.path.join(folder_path, 'LED_on_time.npy'), allow_pickle=True)
self.time = np.load(os.path.join(folder_path, "times.npy"), allow_pickle=True)
csv_filename = [f for f in os.listdir(folder_path) if f.endswith('.csv')][0] # check if there are more than one csv file
self.dataframe = read_csv(os.path.join(folder_path, csv_filename))
self.chirps = np.load(os.path.join(folder_path, 'chirps.npy'), allow_pickle=True)
self.chirps_ids = np.load(os.path.join(folder_path, 'chirps_ids.npy'), allow_pickle=True)
for k, key in enumerate(self.dataframe.keys()):
key = key.lower()
if ' ' in key:
key = key.replace(' ', '_')
if '(' in key:
key = key.replace('(', '')
key = key.replace(')', '')
setattr(self, key, np.array(self.dataframe[self.dataframe.keys()[k]]))
last_LED_t_BORIS = LED_on_time_BORIS[-1]
real_time_range = self.time[-1] - self.time[0]
factor = 1.034141
shift = last_LED_t_BORIS - real_time_range * factor
self.start_s = (self.start_s - shift) / factor
self.stop_s = (self.stop_s - shift) / factor
"""
1 - chasing onset
2 - chasing offset
3 - physical contact event
temporal encpding needs to be corrected ... not exactly 25FPS.
### correspinding python code ###
factor = 1.034141
LED_on_time_BORIS = np.load(os.path.join(folder_path, 'LED_on_time.npy'), allow_pickle=True)
last_LED_t_BORIS = LED_on_time_BORIS[-1]
real_time_range = times[-1] - times[0]
shift = last_LED_t_BORIS - real_time_range * factor
data = pd.read_csv(os.path.join(folder_path, file[1:-7] + '.csv'))
boris_times = data['Start (s)']
data_times = []
for Cevent_t in boris_times:
Cevent_boris_times = (Cevent_t - shift) / factor
data_times.append(Cevent_boris_times)
data_times = np.array(data_times)
behavior = data['Behavior']
"""
def main(datapath: str):
# behavior is pandas dataframe with all the data
bh = Behavior(datapath)
# chirps are not sorted in time (presumably due to prior groupings)
# get and sort chirps and corresponding fish_ids of the chirps
chirps = bh.chirps[np.argsort(bh.chirps)]
chirps_ids = bh.chirps_ids[np.argsort(bh.chirps)]
category = bh.behavior
timestamps = bh.start_s
# split categories
chasing_onset = timestamps[category == 0]
chasing_offset = timestamps[category == 1]
physical_contact = timestamps[category == 2]
# Physical contact-triggered chirps (PTC) mit Rasterplot
# Wahrscheinlichkeit von Phys auf Ch und vice versa
# Chasing-triggered chirps (CTC) mit Rasterplot
# Wahrscheinlichkeit von Chase auf Ch und vice versa
# First overview plot
fig, ax = plt.subplots()
ax.scatter(chirps, np.ones_like(chirps), marker='*', color='royalblue', label='Chirps')
ax.scatter(chasing_onset, np.ones_like(chasing_onset)*2, marker='.', color='forestgreen', label='Chasing onset')
ax.scatter(chasing_offset, np.ones_like(chasing_offset)*2.5, marker='.', color='firebrick', label='Chasing offset')
ax.scatter(physical_contact, np.ones_like(physical_contact)*3, marker='x', color='black', label='Physical contact')
plt.legend()
plt.show()
embed()
exit()
if __name__ == '__main__':
# Path to the data
datapath = '../data/mount_data/2020-05-13-10_00/'
main(datapath)