124 lines
3.6 KiB
Python
124 lines
3.6 KiB
Python
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
from thunderfish.powerspectrum import spectrogram, decibel
|
|
|
|
from modules.filehandling import LoadData
|
|
from modules.datahandling import instantaneous_frequency
|
|
from modules.filters import bandpass_filter
|
|
from modules.plotstyle import PlotStyle
|
|
|
|
ps = PlotStyle()
|
|
|
|
|
|
def main():
|
|
|
|
# Load data
|
|
datapath = "../data/2022-06-02-10_00/"
|
|
data = LoadData(datapath)
|
|
|
|
# good chirp times for data: 2022-06-02-10_00
|
|
window_start_seconds = 3 * 60 * 60 + 6 * 60 + 43.5 + 9 + 6.20
|
|
window_start_index = window_start_seconds * data.raw_rate
|
|
window_duration_seconds = 0.4
|
|
window_duration_index = window_duration_seconds * data.raw_rate
|
|
|
|
timescaler = 1000
|
|
|
|
raw = data.raw[window_start_index:window_start_index +
|
|
window_duration_index, 10]
|
|
|
|
fig, (ax1, ax2) = plt.subplots(
|
|
1, 2, figsize=(21 * ps.cm, 8*ps.cm), sharex=True, sharey=True)
|
|
|
|
# plot instantaneous frequency
|
|
filtered1 = bandpass_filter(
|
|
signal=raw, lowf=750, highf=1200, samplerate=data.raw_rate)
|
|
filtered2 = bandpass_filter(
|
|
signal=raw, lowf=550, highf=700, samplerate=data.raw_rate)
|
|
|
|
freqtime1, freq1 = instantaneous_frequency(
|
|
filtered1, data.raw_rate, smoothing_window=3)
|
|
freqtime2, freq2 = instantaneous_frequency(
|
|
filtered2, data.raw_rate, smoothing_window=3)
|
|
|
|
ax1.plot(freqtime1*timescaler, freq1, color=ps.g, lw=2, label="Fish 1")
|
|
ax1.plot(freqtime2*timescaler, freq2, color=ps.gray,
|
|
lw=2, label="Fish 2")
|
|
# ax.legend(bbox_to_anchor=(1.04, 1), borderaxespad=0)
|
|
# # ps.hide_xax(ax1)
|
|
|
|
# plot fine spectrogram
|
|
spec_power, spec_freqs, spec_times = spectrogram(
|
|
raw,
|
|
ratetime=data.raw_rate,
|
|
freq_resolution=150,
|
|
overlap_frac=0.2,
|
|
)
|
|
|
|
ylims = [300, 1300]
|
|
fmask = np.zeros(spec_freqs.shape, dtype=bool)
|
|
fmask[(spec_freqs > ylims[0]) & (spec_freqs < ylims[1])] = True
|
|
|
|
ax1.imshow(
|
|
decibel(spec_power[fmask, :]),
|
|
extent=[
|
|
spec_times[0]*timescaler,
|
|
spec_times[-1]*timescaler,
|
|
spec_freqs[fmask][0],
|
|
spec_freqs[fmask][-1],
|
|
],
|
|
aspect="auto",
|
|
origin="lower",
|
|
interpolation="gaussian",
|
|
alpha=1,
|
|
# vmin=-100,
|
|
# vmax=-80,
|
|
)
|
|
|
|
# # plot coarse spectrogram
|
|
spec_power, spec_freqs, spec_times = spectrogram(
|
|
raw,
|
|
ratetime=data.raw_rate,
|
|
freq_resolution=15,
|
|
overlap_frac=0.3,
|
|
)
|
|
fmask = np.zeros(spec_freqs.shape, dtype=bool)
|
|
fmask[(spec_freqs > ylims[0]) & (spec_freqs < ylims[1])] = True
|
|
ax2.imshow(
|
|
decibel(spec_power[fmask, :]),
|
|
extent=[
|
|
spec_times[0]*timescaler,
|
|
spec_times[-1]*timescaler,
|
|
spec_freqs[fmask][0],
|
|
spec_freqs[fmask][-1],
|
|
],
|
|
aspect="auto",
|
|
origin="lower",
|
|
interpolation="gaussian",
|
|
alpha=1,
|
|
)
|
|
# ps.hide_xax(ax3)
|
|
ax2.plot(freqtime1*timescaler, freq1, color=ps.g, lw=2, label="_")
|
|
ax2.plot(freqtime2*timescaler, freq2, color=ps.gray,
|
|
lw=2, label="_")
|
|
|
|
ax2.set_xlim(75, 200)
|
|
ax1.set_ylim(400, 1200)
|
|
|
|
fig.supxlabel("Time [ms]", fontsize=14)
|
|
fig.supylabel("Frequency [Hz]", fontsize=14)
|
|
|
|
handles, labels = ax1.get_legend_handles_labels()
|
|
ax2.legend(handles, labels, bbox_to_anchor=(1.04, 1), loc="upper left", ncol=1,)
|
|
|
|
ps.letter_subplots(xoffset=[-0.27, -0.1], yoffset=1.05)
|
|
|
|
plt.subplots_adjust(left=0.12, right=0.85, top=0.89,
|
|
bottom=0.18, hspace=0.35)
|
|
|
|
plt.savefig('../poster/figs/introplot.pdf')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|