GP2023_chirp_detection/code/band_pass_problem.py
2023-02-28 23:48:11 +01:00

36 lines
1.3 KiB
Python

from thunderfish.dataloader import DataLoader as open_data
from thunderfish.powerspectrum import spectrogram, decibel
from IPython import embed
import matplotlib.pyplot as plt
import numpy as np
import os
from scipy.ndimage import gaussian_filter1d
from modules.filters import bandpass_filter
from modules.filehandling import LoadData
def main(folder):
data = LoadData(folder)
t0 = 3*60*60 + 6*60 + 43.5
dt = 60
data_oi = data.raw[t0 * data.raw_rate: (t0+dt)*data.raw_rate, :]
# good electrode
electrode = 10
data_oi = data_oi[:, electrode]
fig, axs = plt.subplots(2,1)
axs[0].plot( np.arange(data_oi.shape[0]) / data.raw_rate, data_oi)
for tr, track_id in enumerate(np.unique(data.ident[~np.isnan(data.ident)])):
rack_window_index = np.arange(len(data.idx))[
(data.ident == track_id) &
(data.time[data.idx] >= t0) &
(data.time[data.idx] <= (t0+dt))]
freq_fish = data.freq[rack_window_index]
axs[1].plot(np.arange(freq_fish.shape[0]) / data.raw_rate, freq_fish)
plt.show()
if __name__ == '__main__':
main('/Users/acfw/Documents/uni_tuebingen/chirpdetection/GP2023_chirp_detection/data/2022-06-02-10_00/')