GP2023_chirp_detection/poster/main.tex
2023-01-24 14:08:07 +01:00

93 lines
3.1 KiB
TeX

\documentclass[25pt, a0paper, portrait, margin=0mm, innermargin=20mm,
blockverticalspace=2mm, colspace=20mm, subcolspace=0mm]{tikzposter} %Default values for poster format options.
\input{packages}
\input{style}
\begin{document}
\renewcommand{\baselinestretch}{1}
\title{\parbox{1500pt}{Poster}}
\author{Sina Prause, Alexander Wendt, and Patrick Weygoldt}
\institute{Supervised by Till Raab \& Jan Benda, Neuroethology Lab, University of Tuebingen}
\usetitlestyle[]{sampletitle}
\maketitle
\renewcommand{\baselinestretch}{1.4}
\begin{columns}
\column{0.4}
\myblock[TranspBlock]{Introduction}{
The time-frequency tradeoff makes reliable signal detecion and simultaneous
sender identification of freely interacting individuals impossible.
This profoundly limits our current understanding of chirps to experiments
with single - or physically separated - individuals.
\vspace{0.6cm}
\begin{tikzfigure}[]
\label{griddrawing}
\includegraphics[width=0.5\linewidth]{example-image-a}
\end{tikzfigure}
}
\myblock[TranspBlock]{Chirp detection}{
\begin{tikzfigure}[]
\label{fig:example_a}
\includegraphics[width=0.5\linewidth]{example-image-a}
\end{tikzfigure}
\vspace{0cm}
}
\column{0.6}
\myblock[TranspBlock]{Chirps during competition}{
\begin{tikzfigure}[]
\label{fig:example_b}
\includegraphics[width=0.5\linewidth]{example-image-b}
\end{tikzfigure}
\noindent
}
\myblock[TranspBlock]{Interactions at modulations}{
\vspace{-1.2cm}
\begin{tikzfigure}[]
\label{fig:example_c}
\includegraphics[width=0.5\linewidth]{example-image-c}
\end{tikzfigure}
\begin{multicols}{2}
\begin{itemize}
\setlength\itemsep{0.5em}
\item $\Delta$EOD$f$ does not appear to decrease during synchronous modulations ().
\item Individuals that rise their EOD$f$ first appear to rise their frequency higher compared to reactors (\textbf{B}).
\vfill
\null
\columnbreak
\item Synchronized fish keep distances below 1 m (\textbf{C}) but distances over 3 m also occur (see \textbf{movie}).
\item Spatial interactions increase \textbf{after} the start of a synchronous modulation (\textbf{D}).
\end{itemize}
\end{multicols}
\vspace{-1cm}
}
\myblock[TranspBlock]{Conclusion}{
\begin{itemize}
\setlength\itemsep{0.5em}
\item Our analysis is the first to indicate that \textit{A. leptorhynchus} uses long, diffuse and synchronized EOD$f$ signals to communicate in addition to chirps and rises.
\item The recorded fish do not exhibit jamming avoidance behavior while close during synchronous modulations.
\item Synchronous signals \textbf{initiate} spatio-temporal interactions.
\end{itemize}
\vspace{0.2cm}
}
\end{columns}
\node [above right,
text=white,
outer sep=45pt,
minimum width=\paperwidth,
align=center,
draw,
fill=boxes,
color=boxes] at (-43.6,-61) {
\textcolor{white}{
\normalsize Contact: \{name\}.\{surname\}@student.uni-tuebingen.de}};
\end{document}