51 lines
1.3 KiB
Python
51 lines
1.3 KiB
Python
import os
|
|
import pandas as pd
|
|
import numpy as np
|
|
from chirpdetection import chirpdetection
|
|
from IPython import embed
|
|
|
|
# check rec ../data/mount_data/2020-03-25-10_00/ starting at 3175
|
|
|
|
|
|
def main(datapaths):
|
|
|
|
for path in datapaths:
|
|
chirpdetection(path, plot='false')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
dataroot = '../data/mount_data/'
|
|
|
|
datasets = sorted([name for name in os.listdir(dataroot) if os.path.isdir(
|
|
os.path.join(dataroot, name))])
|
|
|
|
valid_datasets = []
|
|
|
|
for dataset in datasets:
|
|
|
|
path = os.path.join(dataroot, dataset)
|
|
csv_name = '-'.join(dataset.split('-')[:3]) + '.csv'
|
|
|
|
if os.path.exists(os.path.join(path, csv_name)) is False:
|
|
continue
|
|
|
|
if os.path.exists(os.path.join(path, 'ident_v.npy')) is False:
|
|
continue
|
|
|
|
ident = np.load(os.path.join(path, 'ident_v.npy'))
|
|
number_of_fish = len(np.unique(ident[~np.isnan(ident)]))
|
|
if number_of_fish != 2:
|
|
continue
|
|
|
|
valid_datasets.append(dataset)
|
|
|
|
datapaths = [os.path.join(dataroot, dataset) +
|
|
'/' for dataset in valid_datasets]
|
|
|
|
recs = pd.DataFrame(columns=['recording'], data=valid_datasets)
|
|
recs.to_csv('../recs.csv', index=False)
|
|
main(datapaths)
|
|
|
|
# window 1524 + 244 in dataset index 4 is nice example
|