223 lines
7.1 KiB
Python
223 lines
7.1 KiB
Python
import os
|
|
|
|
import numpy as np
|
|
from IPython import embed
|
|
import matplotlib.pyplot as plt
|
|
from thunderfish.dataloader import DataLoader
|
|
from thunderfish.powerspectrum import spectrogram, decibel
|
|
from scipy.ndimage import gaussian_filter1d
|
|
|
|
from modules.filters import bandpass_filter, envelope, highpass_filter
|
|
|
|
|
|
def instantaneos_frequency(
|
|
signal: np.ndarray, samplerate: int
|
|
) -> tuple[np.ndarray, np.ndarray]:
|
|
|
|
# calculate instantaneos frequency with zero crossings
|
|
roll_signal = np.roll(signal, shift=1)
|
|
time_signal = np.arange(len(signal)) / samplerate
|
|
period_index = np.arange(len(signal))[(roll_signal < 0) & (signal >= 0)]
|
|
|
|
upper_bound = np.abs(signal[period_index])
|
|
lower_bound = np.abs(signal[period_index - 1])
|
|
upper_time = np.abs(time_signal[period_index])
|
|
lower_time = np.abs(time_signal[period_index - 1])
|
|
|
|
# create ratios
|
|
lower_ratio = lower_bound / (lower_bound + upper_bound)
|
|
|
|
# appy to time delta
|
|
time_delta = upper_time - lower_time
|
|
true_zero = lower_time + lower_ratio * time_delta
|
|
|
|
# create new time array
|
|
inst_freq_time = true_zero[:-1] + 0.5 * np.diff(true_zero)
|
|
|
|
# compute frequency
|
|
inst_freq = gaussian_filter1d(1 / np.diff(true_zero), 5)
|
|
|
|
return inst_freq_time, inst_freq
|
|
|
|
|
|
def plot_spectrogram(axis, signal: np.ndarray, samplerate: float) -> None:
|
|
|
|
# compute spectrogram
|
|
spec_power, spec_freqs, spec_times = spectrogram(
|
|
signal,
|
|
ratetime=samplerate,
|
|
freq_resolution=50,
|
|
overlap_frac=0.2,
|
|
)
|
|
|
|
axis.pcolormesh(
|
|
spec_times,
|
|
spec_freqs,
|
|
decibel(spec_power),
|
|
)
|
|
|
|
axis.set_ylim(200, 1200)
|
|
|
|
|
|
def double_bandpass(
|
|
data: DataLoader, samplerate: int, freqs: np.ndarray, search_freq: float
|
|
) -> tuple[np.ndarray, np.ndarray]:
|
|
|
|
# compute boundaries to filter baseline
|
|
q25, q75 = np.percentile(freqs, [25, 75])
|
|
|
|
# check if percentile delta is too small
|
|
if q75 - q25 < 5:
|
|
median = np.median(freqs)
|
|
q25, q75 = median - 2.5, median + 2.5
|
|
|
|
# filter baseline
|
|
filtered_baseline = bandpass_filter(data, samplerate, lowf=q25, highf=q75)
|
|
|
|
# filter search area
|
|
filtered_search_freq = bandpass_filter(
|
|
data, samplerate, lowf=q25 + search_freq, highf=q75 + search_freq
|
|
)
|
|
|
|
return (filtered_baseline, filtered_search_freq)
|
|
|
|
|
|
def main(datapath: str) -> None:
|
|
|
|
# load raw file
|
|
file = os.path.join(datapath, "traces-grid1.raw")
|
|
data = DataLoader(file, 60.0, 0, channel=-1)
|
|
|
|
# load wavetracker files
|
|
time = np.load(datapath + "times.npy", allow_pickle=True)
|
|
freq = np.load(datapath + "fund_v.npy", allow_pickle=True)
|
|
idx = np.load(datapath + "idx_v.npy", allow_pickle=True)
|
|
ident = np.load(datapath + "ident_v.npy", allow_pickle=True)
|
|
|
|
# set time window # <------------------------ Iterate through windows here
|
|
t0 = 3 * 60 * 60 + 6 * 60 + 43.5
|
|
dt = 60
|
|
start_index = t0 * data.samplerate
|
|
stop_index = (t0 + dt) * data.samplerate
|
|
|
|
# load region of interest of raw data file
|
|
data_oi = data[start_index:stop_index, :]
|
|
|
|
# iterate through all fish
|
|
for track_id in np.unique(ident[~np.isnan(ident)])[:2]:
|
|
|
|
# <------------------------------------------ Find best electrodes here
|
|
# <------------------------------------------ Iterate through electrodes
|
|
|
|
electrode = 10
|
|
|
|
# initialize plot
|
|
fig, axs = plt.subplots(
|
|
7, 1, figsize=(20 / 2.54, 12 / 2.54), constrained_layout=True, sharex=True
|
|
)
|
|
|
|
# plot spectrogram
|
|
plot_spectrogram(axs[0], data_oi[:, electrode], data.samplerate)
|
|
|
|
# plot wavetracker tracks to spectrogram
|
|
# for track_id in np.unique(ident): # <---------- Find freq gaps later
|
|
# here
|
|
|
|
# # get indices for time array in time window
|
|
# window_index = np.arange(len(idx))[
|
|
# (ident == track_id) &
|
|
# (time[idx] >= t0) &
|
|
# (time[idx] <= (t0 + dt))
|
|
# ]
|
|
|
|
# freq_temp = freq[window_index]
|
|
# time_temp = time[idx[window_index]]
|
|
|
|
# axs[0].plot(time_temp-t0, freq_temp, lw=2)
|
|
# axs[0].set_ylim(500, 1000)
|
|
|
|
# track_id = ids
|
|
|
|
# frequency where second filter filters
|
|
search_freq = 50
|
|
|
|
# get indices for time array in time window
|
|
window_index = np.arange(len(idx))[
|
|
(ident == track_id) & (time[idx] >= t0) & (time[idx] <= (t0 + dt))
|
|
]
|
|
|
|
# filter baseline and above
|
|
freq_temp = freq[window_index]
|
|
time_temp = time[idx[window_index]]
|
|
baseline, search = double_bandpass(
|
|
data_oi[:, electrode], data.samplerate, freq_temp, search_freq
|
|
)
|
|
|
|
# plot waveform of filtered signal
|
|
axs[2].plot(np.arange(len(baseline)) / data.samplerate, baseline)
|
|
|
|
# plot instatneous frequency
|
|
# broad_baseline = bandpass_filter(data_oi[:, electrode], data.samplerate, lowf=np.mean(
|
|
# freq_temp)-5, highf=np.mean(freq_temp)+200)
|
|
|
|
baseline_freq_time, baseline_freq = instantaneos_frequency(
|
|
baseline, data.samplerate
|
|
)
|
|
axs[1].plot(baseline_freq_time, baseline_freq)
|
|
|
|
# plot waveform of filtered search signal
|
|
axs[3].plot(np.arange(len(baseline)) / data.samplerate, search)
|
|
|
|
# compute envelopes
|
|
cutoff = 25
|
|
baseline_envelope = envelope(baseline, data.samplerate, cutoff)
|
|
axs[2].plot(
|
|
np.arange(len(baseline)) / data.samplerate, baseline_envelope, c="orange"
|
|
)
|
|
search_envelope = envelope(search, data.samplerate, cutoff)
|
|
axs[3].plot(
|
|
np.arange(len(baseline)) / data.samplerate, search_envelope, c="orange"
|
|
)
|
|
|
|
# highpass filter envelopes
|
|
cutoff = 5
|
|
baseline_envelope = highpass_filter(
|
|
baseline_envelope, data.samplerate, cutoff=cutoff
|
|
)
|
|
# search_envelope = highpass_filter(
|
|
# search_envelope, data.samplerate, cutoff=cutoff)
|
|
|
|
# envelopes of filtered envelope of filtered baseline
|
|
baseline_envelope = envelope(
|
|
np.abs(baseline_envelope), data.samplerate, cutoff)
|
|
|
|
# search_envelope = bandpass_filter(
|
|
# search_envelope, data.samplerate, lowf=lowf, highf=highf)
|
|
|
|
# bandpass filter the instantaneous
|
|
inst_freq_filtered = bandpass_filter(
|
|
baseline_freq, data.samplerate, lowf=15, highf=8000
|
|
)
|
|
axs[6].plot(baseline_freq_time, np.abs(inst_freq_filtered))
|
|
|
|
# plot filtered and rectified envelope
|
|
axs[4].plot(np.arange(len(baseline)) /
|
|
data.samplerate, baseline_envelope)
|
|
axs[5].plot(np.arange(len(baseline)) /
|
|
data.samplerate, search_envelope)
|
|
|
|
axs[0].set_title("Spectrogram")
|
|
axs[1].set_title("Fitered baseline instanenous frequency")
|
|
axs[2].set_title("Fitered baseline")
|
|
axs[3].set_title("Fitered above")
|
|
axs[4].set_title("Filtered envelope of baseline envelope")
|
|
axs[5].set_title("Search envelope")
|
|
axs[6].set_title("Filtered absolute instantaneous frequency")
|
|
|
|
plt.show()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
datapath = "../data/2022-06-02-10_00/"
|
|
main(datapath)
|