212 lines
7.6 KiB
Python
212 lines
7.6 KiB
Python
import numpy as np
|
|
|
|
import os
|
|
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
from thunderfish.powerspectrum import decibel
|
|
|
|
from IPython import embed
|
|
from pandas import read_csv
|
|
from modules.logger import makeLogger
|
|
from modules.plotstyle import PlotStyle
|
|
from modules.behaviour_handling import Behavior, correct_chasing_events
|
|
|
|
ps = PlotStyle()
|
|
|
|
logger = makeLogger(__name__)
|
|
|
|
|
|
def get_chirp_winner_loser(folder_name, Behavior, order_meta_df):
|
|
|
|
foldername = folder_name.split('/')[-2]
|
|
winner_row = order_meta_df[order_meta_df['recording'] == foldername]
|
|
winner = winner_row['winner'].values[0].astype(int)
|
|
winner_fish1 = winner_row['fish1'].values[0].astype(int)
|
|
winner_fish2 = winner_row['fish2'].values[0].astype(int)
|
|
|
|
if winner > 0:
|
|
if winner == winner_fish1:
|
|
winner_fish_id = winner_row['rec_id1'].values[0]
|
|
loser_fish_id = winner_row['rec_id2'].values[0]
|
|
|
|
elif winner == winner_fish2:
|
|
winner_fish_id = winner_row['rec_id2'].values[0]
|
|
loser_fish_id = winner_row['rec_id1'].values[0]
|
|
|
|
chirp_winner = len(
|
|
Behavior.chirps[Behavior.chirps_ids == winner_fish_id])
|
|
chirp_loser = len(
|
|
Behavior.chirps[Behavior.chirps_ids == loser_fish_id])
|
|
|
|
return chirp_winner, chirp_loser
|
|
else:
|
|
return np.nan, np.nan
|
|
|
|
|
|
def get_chirp_size(folder_name, Behavior, order_meta_df, id_meta_df):
|
|
|
|
foldername = folder_name.split('/')[-2]
|
|
folder_row = order_meta_df[order_meta_df['recording'] == foldername]
|
|
fish1 = folder_row['fish1'].values[0].astype(int)
|
|
fish2 = folder_row['fish2'].values[0].astype(int)
|
|
|
|
groub = folder_row['group'].values[0].astype(int)
|
|
size_fish1_row = id_meta_df[(id_meta_df['group'] == groub) & (
|
|
id_meta_df['fish'] == fish1)]
|
|
size_fish2_row = id_meta_df[(id_meta_df['group'] == groub) & (
|
|
id_meta_df['fish'] == fish2)]
|
|
|
|
size_winners = [size_fish1_row[col].values[0]
|
|
for col in ['l1', 'l2', 'l3']]
|
|
mean_size_winner = np.nanmean(size_winners)
|
|
|
|
size_losers = [size_fish2_row[col].values[0] for col in ['l1', 'l2', 'l3']]
|
|
mean_size_loser = np.nanmean(size_losers)
|
|
|
|
if mean_size_winner > mean_size_loser:
|
|
size_diff_bigger = mean_size_winner - mean_size_loser
|
|
size_diff_smaller = mean_size_loser - mean_size_winner
|
|
winner_fish_id = folder_row['rec_id1'].values[0]
|
|
loser_fish_id = folder_row['rec_id2'].values[0]
|
|
|
|
elif mean_size_winner < mean_size_loser:
|
|
size_diff_bigger = mean_size_loser - mean_size_winner
|
|
size_diff_smaller = mean_size_winner - mean_size_loser
|
|
winner_fish_id = folder_row['rec_id2'].values[0]
|
|
loser_fish_id = folder_row['rec_id1'].values[0]
|
|
else:
|
|
size_diff = np.nan
|
|
winner_fish_id = np.nan
|
|
loser_fish_id = np.nan
|
|
|
|
chirp_winner = len(
|
|
Behavior.chirps[Behavior.chirps_ids == winner_fish_id])
|
|
chirp_loser = len(
|
|
Behavior.chirps[Behavior.chirps_ids == loser_fish_id])
|
|
|
|
return size_diff_bigger, chirp_winner, size_diff_smaller, chirp_loser
|
|
|
|
|
|
def get_chirp_freq(folder_name, Behavior, order_meta_df):
|
|
|
|
foldername = folder_name.split('/')[-2]
|
|
folder_row = order_meta_df[order_meta_df['recording'] == foldername]
|
|
fish1 = folder_row['rec_id1'].values[0].astype(int)
|
|
fish2 = folder_row['rec_id2'].values[0].astype(int)
|
|
chirp_freq_fish1 = np.nanmedian(
|
|
Behavior.freq[Behavior.ident == fish1])
|
|
chirp_freq_fish2 = np.nanmedian(
|
|
Behavior.freq[Behavior.ident == fish2])
|
|
|
|
if chirp_freq_fish1 > chirp_freq_fish2:
|
|
freq_diff = chirp_freq_fish1 - chirp_freq_fish2
|
|
winner_fish_id = folder_row['rec_id1'].values[0]
|
|
loser_fish_id = folder_row['rec_id2'].values[0]
|
|
|
|
elif chirp_freq_fish1 < chirp_freq_fish2:
|
|
freq_diff = chirp_freq_fish2 - chirp_freq_fish1
|
|
winner_fish_id = folder_row['rec_id2'].values[0]
|
|
loser_fish_id = folder_row['rec_id1'].values[0]
|
|
|
|
chirp_diff = len(Behavior.chirps[Behavior.chirps_ids == winner_fish_id]) - len(
|
|
Behavior.chirps[Behavior.chirps_ids == loser_fish_id])
|
|
|
|
return freq_diff, chirp_diff
|
|
|
|
|
|
def main(datapath: str):
|
|
|
|
foldernames = [
|
|
datapath + x + '/' for x in os.listdir(datapath) if os.path.isdir(datapath+x)]
|
|
path_order_meta = (
|
|
'/').join(foldernames[0].split('/')[:-2]) + '/order_meta.csv'
|
|
order_meta_df = read_csv(path_order_meta)
|
|
order_meta_df['recording'] = order_meta_df['recording'].str[1:-1]
|
|
path_id_meta = (
|
|
'/').join(foldernames[0].split('/')[:-2]) + '/id_meta.csv'
|
|
id_meta_df = read_csv(path_id_meta)
|
|
|
|
chirps_winner = []
|
|
size_diffs = []
|
|
size_chirps_diffs = []
|
|
chirps_loser = []
|
|
freq_diffs = []
|
|
freq_chirps_diffs = []
|
|
|
|
for foldername in foldernames:
|
|
# behabvior is pandas dataframe with all the data
|
|
if foldername == '../data/mount_data/2020-05-12-10_00/':
|
|
continue
|
|
bh = Behavior(foldername)
|
|
# chirps are not sorted in time (presumably due to prior groupings)
|
|
# get and sort chirps and corresponding fish_ids of the chirps
|
|
category = bh.behavior
|
|
timestamps = bh.start_s
|
|
# Correct for doubles in chasing on- and offsets to get the right on-/offset pairs
|
|
# Get rid of tracking faults (two onsets or two offsets after another)
|
|
category, timestamps = correct_chasing_events(category, timestamps)
|
|
|
|
winner_chirp, loser_chirp = get_chirp_winner_loser(
|
|
foldername, bh, order_meta_df)
|
|
chirps_winner.append(winner_chirp)
|
|
chirps_loser.append(loser_chirp)
|
|
size_diff, chirp_diff = get_chirp_size(
|
|
foldername, bh, order_meta_df, id_meta_df)
|
|
size_diffs.append(size_diff)
|
|
size_chirps_diffs.append(chirp_diff)
|
|
|
|
freq_diff, freq_chirps_diff = get_chirp_freq(
|
|
foldername, bh, order_meta_df)
|
|
freq_diffs.append(freq_diff)
|
|
freq_chirps_diffs.append(freq_chirps_diff)
|
|
|
|
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(22*ps.cm, 12*ps.cm), width_ratios=[1.5, 1,1])
|
|
plt.subplots_adjust(left=0.098, right=0.945, top=0.94, wspace=0.343)
|
|
scatterwinner = 1.15
|
|
scatterloser = 1.85
|
|
chirps_winner = np.asarray(chirps_winner)[~np.isnan(chirps_winner)]
|
|
chirps_loser = np.asarray(chirps_loser)[~np.isnan(chirps_loser)]
|
|
|
|
bplot1 = ax1.boxplot(chirps_winner, positions=[
|
|
1], showfliers=False, patch_artist=True)
|
|
bplot2 = ax1.boxplot(chirps_loser, positions=[
|
|
2], showfliers=False, patch_artist=True)
|
|
ax1.scatter(np.ones(len(chirps_winner)) *
|
|
scatterwinner, chirps_winner, color='r')
|
|
ax1.scatter(np.ones(len(chirps_loser)) *
|
|
scatterloser, chirps_loser, color='r')
|
|
ax1.set_xticklabels(['winner', 'loser'])
|
|
ax1.text(0.1, 0.9, f'n = {len(chirps_winner)}',
|
|
transform=ax1.transAxes, color=ps.white)
|
|
|
|
for w, l in zip(chirps_winner, chirps_loser):
|
|
ax1.plot([scatterwinner, scatterloser], [w, l],
|
|
color='r', alpha=0.5, linewidth=0.5)
|
|
ax1.set_ylabel('Chirps [n]', color=ps.white)
|
|
|
|
colors1 = ps.red
|
|
ps.set_boxplot_color(bplot1, colors1)
|
|
colors1 = ps.orange
|
|
ps.set_boxplot_color(bplot2, colors1)
|
|
ax2.scatter(size_diffs, size_chirps_diffs, color='r')
|
|
ax2.set_xlabel('Size difference [mm]')
|
|
ax2.set_ylabel('Chirps difference [n]')
|
|
|
|
#ax3.scatter(freq_diffs, size_chirps_diffs, color='r')
|
|
# ax3.scatter(freq_diffs, freq_chirps_diffs, color='r')
|
|
ax3.set_xlabel('Frequency difference [Hz]')
|
|
ax3.set_yticklabels([])
|
|
ax3.set
|
|
|
|
#plt.savefig('../poster/figs/chirps_winner_loser.pdf')
|
|
plt.show()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
# Path to the data
|
|
datapath = '../data/mount_data/'
|
|
|
|
main(datapath)
|