GP2023_chirp_detection/code/plot_chirp_size.py
2023-04-11 15:33:07 +02:00

373 lines
12 KiB
Python

import os
import matplotlib.pyplot as plt
import numpy as np
from extract_chirps import get_valid_datasets
from IPython import embed
from modules.behaviour_handling import Behavior, correct_chasing_events
from modules.logger import makeLogger
from modules.plotstyle import PlotStyle
from pandas import read_csv
from scipy.stats import pearsonr, wilcoxon
ps = PlotStyle()
logger = makeLogger(__name__)
def get_chirp_winner_loser(folder_name, Behavior, order_meta_df):
foldername = folder_name.split("/")[-2]
winner_row = order_meta_df[order_meta_df["recording"] == foldername]
winner = winner_row["winner"].values[0].astype(int)
winner_fish1 = winner_row["fish1"].values[0].astype(int)
winner_fish2 = winner_row["fish2"].values[0].astype(int)
if winner > 0:
if winner == winner_fish1:
winner_fish_id = winner_row["rec_id1"].values[0]
loser_fish_id = winner_row["rec_id2"].values[0]
elif winner == winner_fish2:
winner_fish_id = winner_row["rec_id2"].values[0]
loser_fish_id = winner_row["rec_id1"].values[0]
chirp_winner = len(
Behavior.chirps[Behavior.chirps_ids == winner_fish_id]
)
chirp_loser = len(Behavior.chirps[Behavior.chirps_ids == loser_fish_id])
return chirp_winner, chirp_loser
else:
return np.nan, np.nan
def get_chirp_size(folder_name, Behavior, order_meta_df, id_meta_df):
foldername = folder_name.split("/")[-2]
folder_row = order_meta_df[order_meta_df["recording"] == foldername]
fish1 = folder_row["fish1"].values[0].astype(int)
fish2 = folder_row["fish2"].values[0].astype(int)
winner = folder_row["winner"].values[0].astype(int)
groub = folder_row["group"].values[0].astype(int)
size_fish1_row = id_meta_df[
(id_meta_df["group"] == groub) & (id_meta_df["fish"] == fish1)
]
size_fish2_row = id_meta_df[
(id_meta_df["group"] == groub) & (id_meta_df["fish"] == fish2)
]
size_winners = [size_fish1_row[col].values[0] for col in ["l1", "l2", "l3"]]
size_fish1 = np.nanmean(size_winners)
size_losers = [size_fish2_row[col].values[0] for col in ["l1", "l2", "l3"]]
size_fish2 = np.nanmean(size_losers)
if winner == fish1:
if size_fish1 > size_fish2:
size_diff_bigger = size_fish1 - size_fish2
size_diff_smaller = size_fish2 - size_fish1
elif size_fish1 < size_fish2:
size_diff_bigger = size_fish1 - size_fish2
size_diff_smaller = size_fish2 - size_fish1
else:
size_diff_bigger = 0
size_diff_smaller = 0
winner_fish_id = folder_row["rec_id1"].values[0]
loser_fish_id = folder_row["rec_id2"].values[0]
elif winner == fish2:
if size_fish2 > size_fish1:
size_diff_bigger = size_fish2 - size_fish1
size_diff_smaller = size_fish1 - size_fish2
elif size_fish2 < size_fish1:
size_diff_bigger = size_fish2 - size_fish1
size_diff_smaller = size_fish1 - size_fish2
else:
size_diff_bigger = 0
size_diff_smaller = 0
winner_fish_id = folder_row["rec_id2"].values[0]
loser_fish_id = folder_row["rec_id1"].values[0]
else:
size_diff_bigger = np.nan
size_diff_smaller = np.nan
winner_fish_id = np.nan
loser_fish_id = np.nan
return (
size_diff_bigger,
size_diff_smaller,
winner_fish_id,
loser_fish_id,
)
chirp_winner = len(Behavior.chirps[Behavior.chirps_ids == winner_fish_id])
chirp_loser = len(Behavior.chirps[Behavior.chirps_ids == loser_fish_id])
return size_diff_bigger, chirp_winner, size_diff_smaller, chirp_loser
def get_chirp_freq(folder_name, Behavior, order_meta_df):
foldername = folder_name.split("/")[-2]
folder_row = order_meta_df[order_meta_df["recording"] == foldername]
fish1 = folder_row["fish1"].values[0].astype(int)
fish2 = folder_row["fish2"].values[0].astype(int)
fish1_freq = folder_row["rec_id1"].values[0].astype(int)
fish2_freq = folder_row["rec_id2"].values[0].astype(int)
chirp_freq_fish1 = np.nanmedian(Behavior.freq[Behavior.ident == fish1_freq])
chirp_freq_fish2 = np.nanmedian(Behavior.freq[Behavior.ident == fish2_freq])
winner = folder_row["winner"].values[0].astype(int)
if winner == fish1:
# if chirp_freq_fish1 > chirp_freq_fish2:
# freq_diff_higher = chirp_freq_fish1 - chirp_freq_fish2
# freq_diff_lower = chirp_freq_fish2 - chirp_freq_fish1
# elif chirp_freq_fish1 < chirp_freq_fish2:
# freq_diff_higher = chirp_freq_fish1 - chirp_freq_fish2
# freq_diff_lower = chirp_freq_fish2 - chirp_freq_fish1
# else:
# freq_diff_higher = np.nan
# freq_diff_lower = np.nan
# winner_fish_id = np.nan
# loser_fish_id = np.nan
winner_fish_id = folder_row["rec_id1"].values[0]
winner_fish_freq = chirp_freq_fish1
loser_fish_id = folder_row["rec_id2"].values[0]
loser_fish_freq = chirp_freq_fish2
elif winner == fish2:
# if chirp_freq_fish2 > chirp_freq_fish1:
# freq_diff_higher = chirp_freq_fish2 - chirp_freq_fish1
# freq_diff_lower = chirp_freq_fish1 - chirp_freq_fish2
# elif chirp_freq_fish2 < chirp_freq_fish1:
# freq_diff_higher = chirp_freq_fish2 - chirp_freq_fish1
# freq_diff_lower = chirp_freq_fish1 - chirp_freq_fish2
# else:
# freq_diff_higher = np.nan
# freq_diff_lower = np.nan
# winner_fish_id = np.nan
# loser_fish_id = np.nan
winner_fish_id = folder_row["rec_id2"].values[0]
winner_fish_freq = chirp_freq_fish2
loser_fish_id = folder_row["rec_id1"].values[0]
loser_fish_freq = chirp_freq_fish1
else:
winner_fish_freq = np.nan
loser_fish_freq = np.nan
winner_fish_id = np.nan
loser_fish_id = np.nan
return winner_fish_freq, winner_fish_id, loser_fish_freq, loser_fish_id
chirp_winner = len(Behavior.chirps[Behavior.chirps_ids == winner_fish_id])
chirp_loser = len(Behavior.chirps[Behavior.chirps_ids == loser_fish_id])
return winner_fish_freq, chirp_winner, loser_fish_freq, chirp_loser
def main(datapath: str):
foldernames = [
datapath + x + "/"
for x in os.listdir(datapath)
if os.path.isdir(datapath + x)
]
foldernames, _ = get_valid_datasets(datapath)
path_order_meta = ("/").join(
foldernames[0].split("/")[:-2]
) + "/order_meta.csv"
order_meta_df = read_csv(path_order_meta)
order_meta_df["recording"] = order_meta_df["recording"].str[1:-1]
path_id_meta = ("/").join(foldernames[0].split("/")[:-2]) + "/id_meta.csv"
id_meta_df = read_csv(path_id_meta)
chirps_winner = []
chirps_loser = []
size_diffs_winner = []
size_diffs_loser = []
size_chirps_winner = []
size_chirps_loser = []
freq_diffs_higher = []
freq_diffs_lower = []
freq_chirps_winner = []
freq_chirps_loser = []
for foldername in foldernames:
# behabvior is pandas dataframe with all the data
if foldername == "../data/mount_data/2020-05-12-10_00/":
continue
bh = Behavior(foldername)
# chirps are not sorted in time (presumably due to prior groupings)
# get and sort chirps and corresponding fish_ids of the chirps
category = bh.behavior
timestamps = bh.start_s
# Correct for doubles in chasing on- and offsets to get the right on-/offset pairs
# Get rid of tracking faults (two onsets or two offsets after another)
category, timestamps = correct_chasing_events(category, timestamps)
winner_chirp, loser_chirp = get_chirp_winner_loser(
foldername, bh, order_meta_df
)
chirps_winner.append(winner_chirp)
chirps_loser.append(loser_chirp)
(
size_diff_bigger,
chirp_winner,
size_diff_smaller,
chirp_loser,
) = get_chirp_size(foldername, bh, order_meta_df, id_meta_df)
(
freq_winner,
chirp_freq_winner,
freq_loser,
chirp_freq_loser,
) = get_chirp_freq(foldername, bh, order_meta_df)
freq_diffs_higher.append(freq_winner)
freq_diffs_lower.append(freq_loser)
freq_chirps_winner.append(chirp_freq_winner)
freq_chirps_loser.append(chirp_freq_loser)
if np.isnan(size_diff_bigger):
continue
size_diffs_winner.append(size_diff_bigger)
size_diffs_loser.append(size_diff_smaller)
size_chirps_winner.append(chirp_winner)
size_chirps_loser.append(chirp_loser)
pearsonr(size_diffs_winner, size_chirps_winner)
pearsonr(size_diffs_loser, size_chirps_loser)
fig, (ax1, ax2, ax3) = plt.subplots(
1,
3,
figsize=(21 * ps.cm, 7 * ps.cm),
width_ratios=[1, 0.8, 0.8],
sharey=True,
)
plt.subplots_adjust(
left=0.11, right=0.948, top=0.86, wspace=0.343, bottom=0.198
)
scatterwinner = 1.15
scatterloser = 1.85
chirps_winner = np.asarray(chirps_winner)[~np.isnan(chirps_winner)]
chirps_loser = np.asarray(chirps_loser)[~np.isnan(chirps_loser)]
embed()
exit()
freq_diffs_higher = np.asarray(freq_diffs_higher)[
~np.isnan(freq_diffs_higher)
]
freq_diffs_lower = np.asarray(freq_diffs_lower)[~np.isnan(freq_diffs_lower)]
freq_chirps_winner = np.asarray(freq_chirps_winner)[
~np.isnan(freq_chirps_winner)
]
freq_chirps_loser = np.asarray(freq_chirps_loser)[
~np.isnan(freq_chirps_loser)
]
stat = wilcoxon(chirps_winner, chirps_loser)
print(stat)
winner_color = ps.gblue2
loser_color = ps.gblue1
bplot1 = ax1.boxplot(
chirps_winner, positions=[0.9], showfliers=False, patch_artist=True
)
bplot2 = ax1.boxplot(
chirps_loser, positions=[2.1], showfliers=False, patch_artist=True
)
ax1.scatter(
np.ones(len(chirps_winner)) * scatterwinner,
chirps_winner,
color=winner_color,
)
ax1.scatter(
np.ones(len(chirps_loser)) * scatterloser,
chirps_loser,
color=loser_color,
)
ax1.set_xticklabels(["Winner", "Loser"])
ax1.text(
0.1,
0.85,
f"n={len(chirps_loser)}",
transform=ax1.transAxes,
color=ps.white,
)
for w, l in zip(chirps_winner, chirps_loser):
ax1.plot(
[scatterwinner, scatterloser],
[w, l],
color=ps.white,
alpha=0.6,
linewidth=1,
zorder=-1,
)
ax1.set_ylabel("Chirp counts", color=ps.white)
ax1.set_xlabel("Competition outcome", color=ps.white)
ps.set_boxplot_color(bplot1, winner_color)
ps.set_boxplot_color(bplot2, loser_color)
ax2.scatter(
size_diffs_winner,
size_chirps_winner,
color=winner_color,
label="Winner",
)
ax2.scatter(
size_diffs_loser, size_chirps_loser, color=loser_color, label="Loser"
)
ax2.text(
0.05,
0.85,
f"n={len(size_chirps_loser)}",
transform=ax2.transAxes,
color=ps.white,
)
ax2.set_xlabel("Size difference [cm]")
# ax2.set_xticks(np.arange(-10, 10.1, 2))
ax3.scatter(freq_diffs_higher, freq_chirps_winner, color=winner_color)
ax3.scatter(freq_diffs_lower, freq_chirps_loser, color=loser_color)
ax3.text(
0.1,
0.85,
f"n={len(np.asarray(freq_chirps_winner)[~np.isnan(freq_chirps_loser)])}",
transform=ax3.transAxes,
color=ps.white,
)
ax3.set_xlabel("EODf [Hz]")
handles, labels = ax2.get_legend_handles_labels()
fig.legend(
handles, labels, loc="upper center", ncol=2, bbox_to_anchor=(0.5, 1.04)
)
# pearson r
plt.savefig("../poster/figs/chirps_winner_loser.pdf")
plt.show()
if __name__ == "__main__":
# Path to the data
datapath = "../data/mount_data/"
main(datapath)