GP2023_chirp_detection/code/analysis.py
2023-04-11 15:33:07 +02:00

117 lines
3.8 KiB
Python

from thunderfish.dataloader import DataLoader as open_data
from thunderfish.powerspectrum import spectrogram, decibel
from IPython import embed
from audioio import play
import matplotlib.pyplot as plt
import numpy as np
import os
from scipy.ndimage import gaussian_filter1d
from modules.filters import bandpass_filter
def main(folder):
file = os.path.join(folder, "traces-grid.raw")
data = open_data(folder, 60.0, 0, channel=-1)
time = np.load(folder + "times.npy", allow_pickle=True)
freq = np.load(folder + "fund_v.npy", allow_pickle=True)
ident = np.load(folder + "ident_v.npy", allow_pickle=True)
idx = np.load(folder + "idx_v.npy", allow_pickle=True)
t0 = 3 * 60 * 60 + 6 * 60 + 43.5
dt = 60
data_oi = data[t0 * data.samplerate : (t0 + dt) * data.samplerate, :]
for i in [10]:
# getting the spectogramm
spec_power, spec_freqs, spec_times = spectrogram(
data_oi[:, i],
ratetime=data.samplerate,
freq_resolution=50,
overlap_frac=0.0,
)
fig, ax = plt.subplots(figsize=(20 / 2.54, 12 / 2.54))
ax.pcolormesh(
spec_times, spec_freqs, decibel(spec_power), vmin=-100, vmax=-50
)
for track_id in np.unique(ident):
# window_index for time array in time window
window_index = np.arange(len(idx))[
(ident == track_id)
& (time[idx] >= t0)
& (time[idx] <= (t0 + dt))
]
freq_temp = freq[window_index]
time_temp = time[idx[window_index]]
# mean_freq = np.mean(freq_temp)
# fdata = bandpass_filter(data_oi[:, track_id], data.samplerate, mean_freq-5, mean_freq+200)
ax.plot(time_temp - t0, freq_temp)
ax.set_ylim(500, 1000)
plt.show()
# filter plot
id = 10.0
i = 10
window_index = np.arange(len(idx))[
(ident == id) & (time[idx] >= t0) & (time[idx] <= (t0 + dt))
]
freq_temp = freq[window_index]
time_temp = time[idx[window_index]]
mean_freq = np.mean(freq_temp)
fdata = bandpass_filter(
data_oi[:, i],
rate=data.samplerate,
lowf=mean_freq - 5,
highf=mean_freq + 200,
)
fig, ax = plt.subplots()
ax.plot(np.arange(len(fdata)) / data.samplerate, fdata, marker="*")
# plt.show()
# freqency analyis of filtered data
time_fdata = np.arange(len(fdata)) / data.samplerate
roll_fdata = np.roll(fdata, shift=1)
period_index = np.arange(len(fdata))[(roll_fdata < 0) & (fdata >= 0)]
plt.plot(time_fdata, fdata)
plt.scatter(time_fdata[period_index], fdata[period_index], c="r")
plt.scatter(time_fdata[period_index - 1], fdata[period_index - 1], c="r")
upper_bound = np.abs(fdata[period_index])
lower_bound = np.abs(fdata[period_index - 1])
upper_times = np.abs(time_fdata[period_index])
lower_times = np.abs(time_fdata[period_index - 1])
lower_ratio = lower_bound / (lower_bound + upper_bound)
upper_ratio = upper_bound / (lower_bound + upper_bound)
time_delta = upper_times - lower_times
true_zero = lower_times + time_delta * lower_ratio
plt.scatter(true_zero, np.zeros(len(true_zero)))
# calculate the frequency
inst_freq = 1 / np.diff(true_zero)
filtered_inst_freq = gaussian_filter1d(inst_freq, 0.005)
fig, ax = plt.subplots()
ax.plot(filtered_inst_freq, marker=".")
# in 5 sekunden welcher fisch auf einer elektrode am
embed()
exit()
# data of intrests
# first look at the raw data, channel 11 is important
# fig, ax = plt.subplots(figsize=(20/2.54, 12/2.54))
# ax.plot(np.arange(len(data_oi[:, i])), data_oi[:, i])
pass
if __name__ == "__main__":
main(
"/Users/acfw/Documents/uni_tuebingen/chirpdetection/gp_benda/data/2022-06-02-10_00/"
)