import numpy as np import os import numpy as np import matplotlib.pyplot as plt from thunderfish.powerspectrum import decibel from IPython import embed from pandas import read_csv from modules.logger import makeLogger from modules.plotstyle import PlotStyle from modules.behaviour_handling import Behavior, correct_chasing_events ps = PlotStyle() logger = makeLogger(__name__) def main(datapath: str): foldernames = [datapath + x + '/' for x in os.listdir(datapath) if os.path.isdir(datapath+x)] for foldername in foldernames: if foldername == '../data/mount_data/2020-05-12-10_00/': continue # behabvior is pandas dataframe with all the data bh = Behavior(foldername) category = bh.behavior timestamps = bh.start_s # Correct for doubles in chasing on- and offsets to get the right on-/offset pairs # Get rid of tracking faults (two onsets or two offsets after another) category, timestamps = correct_chasing_events(category, timestamps) # split categories chasing_onset = (timestamps[category == 0]/ 60) /60 chasing_offset = (timestamps[category == 1]/ 60) /60 physical_contact = (timestamps[category == 2] / 60) /60 all_fish_ids = np.unique(bh.chirps_ids) fish1_id = all_fish_ids[0] fish2_id = all_fish_ids[1] # Associate chirps to inidividual fish fish1 = (bh.chirps[bh.chirps_ids == fish1_id] / 60) /60 fish2 = (bh.chirps[bh.chirps_ids == fish2_id] / 60) /60 fish1_color = ps.red fish2_color = ps.orange fig, ax = plt.subplots(4, 1, figsize=(10, 5), height_ratios=[0.5, 0.5, 0.5, 6], sharex=True) # marker size s = 200 ax[0].scatter(physical_contact, np.ones(len(physical_contact)), color='firebrick', marker='|', s=s) ax[1].scatter(chasing_onset, np.ones(len(chasing_onset)), color='green', marker='|', s=s ) ax[2].scatter(fish1, np.ones(len(fish1))-0.25, color=fish1_color, marker='|', s=s) ax[2].scatter(fish2, np.zeros(len(fish2))+0.25, color=fish2_color, marker='|', s=s) freq_temp = bh.freq[bh.ident==fish1_id] time_temp = bh.time[bh.idx[bh.ident==fish1_id]] ax[3].plot((time_temp/ 60) /60, freq_temp, color=fish1_color) freq_temp = bh.freq[bh.ident==fish2_id] time_temp = bh.time[bh.idx[bh.ident==fish2_id]] ax[3].plot((time_temp/ 60) /60, freq_temp, color=fish2_color) #ax[3].imshow(decibel(bh.spec), extent=[bh.time[0]/60/60, bh.time[-1]/60/60, 0, 2000], aspect='auto', origin='lower') # Hide grid lines ax[0].grid(False) ax[0].set_frame_on(False) ax[0].set_xticks([]) ax[0].set_yticks([]) ps.hide_ax(ax[0]) ax[1].grid(False) ax[1].set_frame_on(False) ax[1].set_xticks([]) ax[1].set_yticks([]) ps.hide_ax(ax[1]) ax[2].grid(False) ax[2].set_frame_on(False) ax[2].set_yticks([]) ax[2].set_xticks([]) ps.hide_ax(ax[2]) ax[3].axvspan(3, 6, 0, 5, facecolor='grey', alpha=0.5) ax[3].set_xticks(np.arange(0, 6.1, 0.5)) labelpad = 40 ax[0].set_ylabel('Physical contact', rotation=0, labelpad=labelpad) ax[1].set_ylabel('Chasing events', rotation=0, labelpad=labelpad) ax[2].set_ylabel('Chirps', rotation=0, labelpad=labelpad) ax[3].set_ylabel('EODf') ax[3].set_xlabel('Time [h]') ax[0].set_title(foldername.split('/')[-2]) # 2020-03-31-9_59 plt.show() embed() # plot chirps if __name__ == '__main__': # Path to the data datapath = '../data/mount_data/' main(datapath)