import os import matplotlib.pyplot as plt import numpy as np from extract_chirps import get_valid_datasets from IPython import embed from modules.behaviour_handling import Behavior, correct_chasing_events from modules.logger import makeLogger from modules.plotstyle import PlotStyle from pandas import read_csv from scipy.stats import pearsonr, wilcoxon ps = PlotStyle() logger = makeLogger(__name__) def get_chirp_winner_loser(folder_name, Behavior, order_meta_df): foldername = folder_name.split("/")[-2] winner_row = order_meta_df[order_meta_df["recording"] == foldername] winner = winner_row["winner"].values[0].astype(int) winner_fish1 = winner_row["fish1"].values[0].astype(int) winner_fish2 = winner_row["fish2"].values[0].astype(int) if winner > 0: if winner == winner_fish1: winner_fish_id = winner_row["rec_id1"].values[0] loser_fish_id = winner_row["rec_id2"].values[0] elif winner == winner_fish2: winner_fish_id = winner_row["rec_id2"].values[0] loser_fish_id = winner_row["rec_id1"].values[0] chirp_winner = len( Behavior.chirps[Behavior.chirps_ids == winner_fish_id] ) chirp_loser = len(Behavior.chirps[Behavior.chirps_ids == loser_fish_id]) return chirp_winner, chirp_loser else: return np.nan, np.nan def get_chirp_size(folder_name, Behavior, order_meta_df, id_meta_df): foldername = folder_name.split("/")[-2] folder_row = order_meta_df[order_meta_df["recording"] == foldername] fish1 = folder_row["fish1"].values[0].astype(int) fish2 = folder_row["fish2"].values[0].astype(int) winner = folder_row["winner"].values[0].astype(int) groub = folder_row["group"].values[0].astype(int) size_fish1_row = id_meta_df[ (id_meta_df["group"] == groub) & (id_meta_df["fish"] == fish1) ] size_fish2_row = id_meta_df[ (id_meta_df["group"] == groub) & (id_meta_df["fish"] == fish2) ] size_winners = [size_fish1_row[col].values[0] for col in ["l1", "l2", "l3"]] size_fish1 = np.nanmean(size_winners) size_losers = [size_fish2_row[col].values[0] for col in ["l1", "l2", "l3"]] size_fish2 = np.nanmean(size_losers) if winner == fish1: if size_fish1 > size_fish2: size_diff_bigger = size_fish1 - size_fish2 size_diff_smaller = size_fish2 - size_fish1 elif size_fish1 < size_fish2: size_diff_bigger = size_fish1 - size_fish2 size_diff_smaller = size_fish2 - size_fish1 else: size_diff_bigger = 0 size_diff_smaller = 0 winner_fish_id = folder_row["rec_id1"].values[0] loser_fish_id = folder_row["rec_id2"].values[0] elif winner == fish2: if size_fish2 > size_fish1: size_diff_bigger = size_fish2 - size_fish1 size_diff_smaller = size_fish1 - size_fish2 elif size_fish2 < size_fish1: size_diff_bigger = size_fish2 - size_fish1 size_diff_smaller = size_fish1 - size_fish2 else: size_diff_bigger = 0 size_diff_smaller = 0 winner_fish_id = folder_row["rec_id2"].values[0] loser_fish_id = folder_row["rec_id1"].values[0] else: size_diff_bigger = np.nan size_diff_smaller = np.nan winner_fish_id = np.nan loser_fish_id = np.nan return ( size_diff_bigger, size_diff_smaller, winner_fish_id, loser_fish_id, ) chirp_winner = len(Behavior.chirps[Behavior.chirps_ids == winner_fish_id]) chirp_loser = len(Behavior.chirps[Behavior.chirps_ids == loser_fish_id]) return size_diff_bigger, chirp_winner, size_diff_smaller, chirp_loser def get_chirp_freq(folder_name, Behavior, order_meta_df): foldername = folder_name.split("/")[-2] folder_row = order_meta_df[order_meta_df["recording"] == foldername] fish1 = folder_row["fish1"].values[0].astype(int) fish2 = folder_row["fish2"].values[0].astype(int) fish1_freq = folder_row["rec_id1"].values[0].astype(int) fish2_freq = folder_row["rec_id2"].values[0].astype(int) chirp_freq_fish1 = np.nanmedian(Behavior.freq[Behavior.ident == fish1_freq]) chirp_freq_fish2 = np.nanmedian(Behavior.freq[Behavior.ident == fish2_freq]) winner = folder_row["winner"].values[0].astype(int) if winner == fish1: # if chirp_freq_fish1 > chirp_freq_fish2: # freq_diff_higher = chirp_freq_fish1 - chirp_freq_fish2 # freq_diff_lower = chirp_freq_fish2 - chirp_freq_fish1 # elif chirp_freq_fish1 < chirp_freq_fish2: # freq_diff_higher = chirp_freq_fish1 - chirp_freq_fish2 # freq_diff_lower = chirp_freq_fish2 - chirp_freq_fish1 # else: # freq_diff_higher = np.nan # freq_diff_lower = np.nan # winner_fish_id = np.nan # loser_fish_id = np.nan winner_fish_id = folder_row["rec_id1"].values[0] winner_fish_freq = chirp_freq_fish1 loser_fish_id = folder_row["rec_id2"].values[0] loser_fish_freq = chirp_freq_fish2 elif winner == fish2: # if chirp_freq_fish2 > chirp_freq_fish1: # freq_diff_higher = chirp_freq_fish2 - chirp_freq_fish1 # freq_diff_lower = chirp_freq_fish1 - chirp_freq_fish2 # elif chirp_freq_fish2 < chirp_freq_fish1: # freq_diff_higher = chirp_freq_fish2 - chirp_freq_fish1 # freq_diff_lower = chirp_freq_fish1 - chirp_freq_fish2 # else: # freq_diff_higher = np.nan # freq_diff_lower = np.nan # winner_fish_id = np.nan # loser_fish_id = np.nan winner_fish_id = folder_row["rec_id2"].values[0] winner_fish_freq = chirp_freq_fish2 loser_fish_id = folder_row["rec_id1"].values[0] loser_fish_freq = chirp_freq_fish1 else: winner_fish_freq = np.nan loser_fish_freq = np.nan winner_fish_id = np.nan loser_fish_id = np.nan return winner_fish_freq, winner_fish_id, loser_fish_freq, loser_fish_id chirp_winner = len(Behavior.chirps[Behavior.chirps_ids == winner_fish_id]) chirp_loser = len(Behavior.chirps[Behavior.chirps_ids == loser_fish_id]) return winner_fish_freq, chirp_winner, loser_fish_freq, chirp_loser def main(datapath: str): foldernames = [ datapath + x + "/" for x in os.listdir(datapath) if os.path.isdir(datapath + x) ] foldernames, _ = get_valid_datasets(datapath) path_order_meta = ("/").join( foldernames[0].split("/")[:-2] ) + "/order_meta.csv" order_meta_df = read_csv(path_order_meta) order_meta_df["recording"] = order_meta_df["recording"].str[1:-1] path_id_meta = ("/").join(foldernames[0].split("/")[:-2]) + "/id_meta.csv" id_meta_df = read_csv(path_id_meta) chirps_winner = [] chirps_loser = [] size_diffs_winner = [] size_diffs_loser = [] size_chirps_winner = [] size_chirps_loser = [] freq_diffs_higher = [] freq_diffs_lower = [] freq_chirps_winner = [] freq_chirps_loser = [] for foldername in foldernames: # behabvior is pandas dataframe with all the data if foldername == "../data/mount_data/2020-05-12-10_00/": continue bh = Behavior(foldername) # chirps are not sorted in time (presumably due to prior groupings) # get and sort chirps and corresponding fish_ids of the chirps category = bh.behavior timestamps = bh.start_s # Correct for doubles in chasing on- and offsets to get the right on-/offset pairs # Get rid of tracking faults (two onsets or two offsets after another) category, timestamps = correct_chasing_events(category, timestamps) winner_chirp, loser_chirp = get_chirp_winner_loser( foldername, bh, order_meta_df ) chirps_winner.append(winner_chirp) chirps_loser.append(loser_chirp) ( size_diff_bigger, chirp_winner, size_diff_smaller, chirp_loser, ) = get_chirp_size(foldername, bh, order_meta_df, id_meta_df) ( freq_winner, chirp_freq_winner, freq_loser, chirp_freq_loser, ) = get_chirp_freq(foldername, bh, order_meta_df) freq_diffs_higher.append(freq_winner) freq_diffs_lower.append(freq_loser) freq_chirps_winner.append(chirp_freq_winner) freq_chirps_loser.append(chirp_freq_loser) if np.isnan(size_diff_bigger): continue size_diffs_winner.append(size_diff_bigger) size_diffs_loser.append(size_diff_smaller) size_chirps_winner.append(chirp_winner) size_chirps_loser.append(chirp_loser) pearsonr(size_diffs_winner, size_chirps_winner) pearsonr(size_diffs_loser, size_chirps_loser) fig, (ax1, ax2, ax3) = plt.subplots( 1, 3, figsize=(21 * ps.cm, 7 * ps.cm), width_ratios=[1, 0.8, 0.8], sharey=True, ) plt.subplots_adjust( left=0.11, right=0.948, top=0.86, wspace=0.343, bottom=0.198 ) scatterwinner = 1.15 scatterloser = 1.85 chirps_winner = np.asarray(chirps_winner)[~np.isnan(chirps_winner)] chirps_loser = np.asarray(chirps_loser)[~np.isnan(chirps_loser)] embed() exit() freq_diffs_higher = np.asarray(freq_diffs_higher)[ ~np.isnan(freq_diffs_higher) ] freq_diffs_lower = np.asarray(freq_diffs_lower)[~np.isnan(freq_diffs_lower)] freq_chirps_winner = np.asarray(freq_chirps_winner)[ ~np.isnan(freq_chirps_winner) ] freq_chirps_loser = np.asarray(freq_chirps_loser)[ ~np.isnan(freq_chirps_loser) ] stat = wilcoxon(chirps_winner, chirps_loser) print(stat) winner_color = ps.gblue2 loser_color = ps.gblue1 bplot1 = ax1.boxplot( chirps_winner, positions=[0.9], showfliers=False, patch_artist=True ) bplot2 = ax1.boxplot( chirps_loser, positions=[2.1], showfliers=False, patch_artist=True ) ax1.scatter( np.ones(len(chirps_winner)) * scatterwinner, chirps_winner, color=winner_color, ) ax1.scatter( np.ones(len(chirps_loser)) * scatterloser, chirps_loser, color=loser_color, ) ax1.set_xticklabels(["Winner", "Loser"]) ax1.text( 0.1, 0.85, f"n={len(chirps_loser)}", transform=ax1.transAxes, color=ps.white, ) for w, l in zip(chirps_winner, chirps_loser): ax1.plot( [scatterwinner, scatterloser], [w, l], color=ps.white, alpha=0.6, linewidth=1, zorder=-1, ) ax1.set_ylabel("Chirp counts", color=ps.white) ax1.set_xlabel("Competition outcome", color=ps.white) ps.set_boxplot_color(bplot1, winner_color) ps.set_boxplot_color(bplot2, loser_color) ax2.scatter( size_diffs_winner, size_chirps_winner, color=winner_color, label="Winner", ) ax2.scatter( size_diffs_loser, size_chirps_loser, color=loser_color, label="Loser" ) ax2.text( 0.05, 0.85, f"n={len(size_chirps_loser)}", transform=ax2.transAxes, color=ps.white, ) ax2.set_xlabel("Size difference [cm]") # ax2.set_xticks(np.arange(-10, 10.1, 2)) ax3.scatter(freq_diffs_higher, freq_chirps_winner, color=winner_color) ax3.scatter(freq_diffs_lower, freq_chirps_loser, color=loser_color) ax3.text( 0.1, 0.85, f"n={len(np.asarray(freq_chirps_winner)[~np.isnan(freq_chirps_loser)])}", transform=ax3.transAxes, color=ps.white, ) ax3.set_xlabel("EODf [Hz]") handles, labels = ax2.get_legend_handles_labels() fig.legend( handles, labels, loc="upper center", ncol=2, bbox_to_anchor=(0.5, 1.04) ) # pearson r plt.savefig("../poster/figs/chirps_winner_loser.pdf") plt.show() if __name__ == "__main__": # Path to the data datapath = "../data/mount_data/" main(datapath)