import numpy as np import os import numpy as np import matplotlib.pyplot as plt from thunderfish.powerspectrum import decibel from IPython import embed from pandas import read_csv from modules.logger import makeLogger from modules.plotstyle import PlotStyle ps = PlotStyle() logger = makeLogger(__name__) class Behavior: """Load behavior data from csv file as class attributes Attributes ---------- behavior: 0: chasing onset, 1: chasing offset, 2: physical contact behavior_type: behavioral_category: comment_start: comment_stop: dataframe: pandas dataframe with all the data duration_s: media_file: observation_date: observation_id: start_s: start time of the event in seconds stop_s: stop time of the event in seconds total_length: """ def __init__(self, folder_path: str) -> None: LED_on_time_BORIS = np.load(os.path.join(folder_path, 'LED_on_time.npy'), allow_pickle=True) csv_filename = [f for f in os.listdir(folder_path) if f.endswith('.csv')][0] logger.info(f'CSV file: {csv_filename}') self.dataframe = read_csv(os.path.join(folder_path, csv_filename)) self.chirps = np.load(os.path.join(folder_path, 'chirps.npy'), allow_pickle=True) self.chirps_ids = np.load(os.path.join(folder_path, 'chirp_ids.npy'), allow_pickle=True) self.ident = np.load(os.path.join(folder_path, 'ident_v.npy'), allow_pickle=True) self.idx = np.load(os.path.join(folder_path, 'idx_v.npy'), allow_pickle=True) self.freq = np.load(os.path.join(folder_path, 'fund_v.npy'), allow_pickle=True) self.time = np.load(os.path.join(folder_path, "times.npy"), allow_pickle=True) self.spec = np.load(os.path.join(folder_path, "spec.npy"), allow_pickle=True) for k, key in enumerate(self.dataframe.keys()): key = key.lower() if ' ' in key: key = key.replace(' ', '_') if '(' in key: key = key.replace('(', '') key = key.replace(')', '') setattr(self, key, np.array(self.dataframe[self.dataframe.keys()[k]])) last_LED_t_BORIS = LED_on_time_BORIS[-1] real_time_range = self.time[-1] - self.time[0] factor = 1.034141 shift = last_LED_t_BORIS - real_time_range * factor self.start_s = (self.start_s - shift) / factor self.stop_s = (self.stop_s - shift) / factor def correct_chasing_events( category: np.ndarray, timestamps: np.ndarray ) -> tuple[np.ndarray, np.ndarray]: onset_ids = np.arange( len(category))[category == 0] offset_ids = np.arange( len(category))[category == 1] woring_bh = np.arange(len(category))[category!=2][:-1][np.diff(category[category!=2])==0] if onset_ids[0] > offset_ids[0]: offset_ids = np.delete(offset_ids, 0) help_index = offset_ids[0] woring_bh = np.append(woring_bh, help_index) category = np.delete(category, woring_bh) timestamps = np.delete(timestamps, woring_bh) # Check whether on- or offset is longer and calculate length difference if len(onset_ids) > len(offset_ids): len_diff = len(onset_ids) - len(offset_ids) logger.info(f'Onsets are greater than offsets by {len_diff}') elif len(onset_ids) < len(offset_ids): len_diff = len(offset_ids) - len(onset_ids) logger.info(f'Offsets are greater than onsets by {len_diff}') elif len(onset_ids) == len(offset_ids): logger.info('Chasing events are equal') return category, timestamps def main(datapath: str): foldernames = [datapath + x + '/' for x in os.listdir(datapath) if os.path.isdir(datapath+x)] path_to_csv = ('/').join(foldernames[0].split('/')[:-2]) + '/order_meta.csv' meta_id = read_csv(path_to_csv) meta_id['recording'] = meta_id['recording'].str[1:-1] chirps_winner = [] chirps_loser = [] for foldername in foldernames: # behabvior is pandas dataframe with all the data if foldername == '../data/mount_data/2020-05-12-10_00/': continue bh = Behavior(foldername) # chirps are not sorted in time (presumably due to prior groupings) # get and sort chirps and corresponding fish_ids of the chirps category = bh.behavior timestamps = bh.start_s # Correct for doubles in chasing on- and offsets to get the right on-/offset pairs # Get rid of tracking faults (two onsets or two offsets after another) category, timestamps = correct_chasing_events(category, timestamps) folder_name = foldername.split('/')[-2] winner_row = meta_id[meta_id['recording'] == folder_name] winner = winner_row['winner'].values[0].astype(int) winner_fish1 = winner_row['fish1'].values[0].astype(int) winner_fish2 = winner_row['fish2'].values[0].astype(int) if winner == winner_fish1: winner_fish_id = winner_row['rec_id1'].values[0] loser_fish_id = winner_row['rec_id2'].values[0] elif winner == winner_fish2: winner_fish_id = winner_row['rec_id2'].values[0] loser_fish_id = winner_row['rec_id1'].values[0] else: continue print(foldername) all_fish_ids = np.unique(bh.chirps_ids) chirp_loser = len(bh.chirps[bh.chirps_ids == loser_fish_id]) chirp_winner = len(bh.chirps[bh.chirps_ids == winner_fish_id]) chirps_winner.append(chirp_winner) chirps_loser.append(chirp_loser) fish1_id = all_fish_ids[0] fish2_id = all_fish_ids[1] print(winner_fish_id) print(all_fish_ids) fig, ax = plt.subplots() ax.boxplot([chirps_winner, chirps_loser]) ax.set_xticklabels(['winner', 'loser']) ax.set_ylabel('Chirpscount per trial') plt.show() embed() exit() if __name__ == '__main__': # Path to the data datapath = '../data/mount_data/' main(datapath)