import numpy as np from typing import List, Any from scipy.ndimage import gaussian_filter1d from scipy.stats import gamma, norm from scipy.signal import resample def minmaxnorm(data): """ Normalize data to [0, 1] Parameters ---------- data : np.ndarray Data to normalize. Returns ------- np.ndarray Normalized data. """ return (data - np.min(data)) / (np.max(data) - np.min(data)) def instantaneous_frequency2(signal: np.ndarray, fs: float, interpolation: str = 'linear') -> np.ndarray: """ Compute the instantaneous frequency of a periodic signal using zero crossings and resample the frequency using linear or cubic interpolation to match the dimensions of the input array. Parameters ---------- signal : np.ndarray Input signal. fs : float Sampling frequency of the input signal. interpolation : str, optional Interpolation method to use during resampling. Should be either 'linear' or 'cubic'. Default is 'linear'. Returns ------- freq : np.ndarray Instantaneous frequency of the input signal, resampled to match the dimensions of the input array. """ # Find zero crossings zero_crossings = np.where(np.diff(np.sign(signal)))[0] # Compute time differences between zero crossings time_diff = np.diff(zero_crossings) / fs # Compute instantaneous frequency as inverse of time differences freq = 1 / time_diff # Resample the frequency using specified interpolation method to match the dimensions of the input array orig_len = len(signal) freq = resample(freq, orig_len) if interpolation == 'linear': freq = np.interp(np.arange(0, orig_len), np.arange(0, orig_len), freq) elif interpolation == 'cubic': freq = resample(freq, orig_len, window='cubic') return freq def instantaneous_frequency( signal: np.ndarray, samplerate: int, smoothing_window: int, interpolation: str = 'linear', ) -> np.ndarray: """ Compute the instantaneous frequency of a signal that is approximately sinusoidal and symmetric around 0. Parameters ---------- signal : np.ndarray Signal to compute the instantaneous frequency from. samplerate : int Samplerate of the signal. smoothing_window : int Window size for the gaussian filter. interpolation : str, optional Interpolation method to use during resampling. Should be either 'linear' or 'cubic'. Default is 'linear'. Returns ------- tuple[np.ndarray, np.ndarray] """ # calculate instantaneous frequency with zero crossings roll_signal = np.roll(signal, shift=1) time_signal = np.arange(len(signal)) / samplerate period_index = np.arange(len(signal))[(roll_signal < 0) & (signal >= 0)][ 1:-1 ] upper_bound = np.abs(signal[period_index]) lower_bound = np.abs(signal[period_index - 1]) upper_time = np.abs(time_signal[period_index]) lower_time = np.abs(time_signal[period_index - 1]) # create ratio lower_ratio = lower_bound / (lower_bound + upper_bound) # appy to time delta time_delta = upper_time - lower_time true_zero = lower_time + lower_ratio * time_delta # create new time array instantaneous_frequency_time = true_zero[:-1] + 0.5 * np.diff(true_zero) # compute frequency instantaneous_frequency = gaussian_filter1d( 1 / np.diff(true_zero), smoothing_window ) # Resample the frequency using specified interpolation method to match the dimensions of the input array orig_len = len(signal) freq = resample(instantaneous_frequency, orig_len) if interpolation == 'linear': freq = np.interp(np.arange(0, orig_len), np.arange(0, orig_len), freq) elif interpolation == 'cubic': freq = resample(freq, orig_len, window='cubic') return freq def purge_duplicates( timestamps: List[float], threshold: float = 0.5 ) -> List[float]: """ Compute the mean of groups of timestamps that are closer to the previous or consecutive timestamp than the threshold, and return all timestamps that are further apart from the previous or consecutive timestamp than the threshold in a single list. Parameters ---------- timestamps : List[float] A list of sorted timestamps threshold : float, optional The threshold to group the timestamps by, default is 0.5 Returns ------- List[float] A list containing a list of timestamps that are further apart than the threshold and a list of means of the groups of timestamps that are closer to the previous or consecutive timestamp than the threshold. """ # Initialize an empty list to store the groups of timestamps that are # closer to the previous or consecutive timestamp than the threshold groups = [] # initialize the first group with the first timestamp group = [timestamps[0]] for i in range(1, len(timestamps)): # check the difference between current timestamp and previous # timestamp is less than the threshold if timestamps[i] - timestamps[i - 1] < threshold: # add the current timestamp to the current group group.append(timestamps[i]) else: # if the difference is greater than the threshold # append the current group to the groups list groups.append(group) # start a new group with the current timestamp group = [timestamps[i]] # after iterating through all the timestamps, add the last group to the # groups list groups.append(group) # get the mean of each group and only include the ones that have more # than 1 timestamp means = [np.mean(group) for group in groups if len(group) > 1] # get the timestamps that are outliers, i.e. the ones that are alone # in a group outliers = [ts for group in groups for ts in group if len(group) == 1] # return the outliers and means in a single list return outliers + means def group_timestamps( sublists: List[List[float]], at_least_in: int, difference_threshold: float ) -> List[float]: """ Groups timestamps that are less than `threshold` milliseconds apart from at least `n` other sublists. Returns a list of the mean of each group. If any of the sublists is empty, it will be ignored. Parameters ---------- sublists : List[List[float]] a list of sublists, each containing timestamps n : int minimum number of sublists that a timestamp must be close to in order to be grouped threshold : float the maximum difference in milliseconds between timestamps to be considered a match Returns ------- List[float] a list of the mean of each group. """ # Flatten the sublists and sort the timestamps timestamps = [ timestamp for sublist in sublists if sublist for timestamp in sublist ] timestamps.sort() if len(timestamps) == 0: return [] groups = [] current_group = [timestamps[0]] # Group timestamps that are less than threshold milliseconds apart for i in range(1, len(timestamps)): if timestamps[i] - timestamps[i - 1] < difference_threshold: current_group.append(timestamps[i]) else: groups.append(current_group) current_group = [timestamps[i]] groups.append(current_group) # Retain only groups that contain at least n timestamps final_groups = [] for group in groups: if len(group) >= at_least_in: final_groups.append(group) # Calculate the mean of each group means = [np.mean(group) for group in final_groups] return means def flatten(list: List[List[Any]]) -> List: """ Flattens a list / array of lists. Parameters ---------- l : array or list of lists The list to be flattened Returns ------- list The flattened list """ return [item for sublist in list for item in sublist] def causal_kde1d(spikes, time, width, shape=2): """ causalkde computes a kernel density estimate using a causal kernel (i.e. exponential or gamma distribution). A shape of 1 turns the gamma distribution into an exponential. Parameters ---------- spikes : array-like spike times time : array-like sampling time width : float kernel width shape : int, optional shape of gamma distribution, by default 1 Returns ------- rate : array-like instantaneous firing rate """ # compute dt dt = time[1] - time[0] # time on which to compute kernel: tmax = 10 * width # kernel not wider than time if 2 * tmax > time[-1] - time[0]: tmax = 0.5 * (time[-1] - time[0]) # kernel time ktime = np.arange(-tmax, tmax, dt) # gamma kernel centered in ktime: kernel = gamma.pdf( x=ktime, a=shape, loc=0, scale=width, ) # indices of spikes in time array: indices = np.asarray((spikes - time[0]) / dt, dtype=int) # binary spike train: brate = np.zeros(len(time)) brate[indices[(indices >= 0) & (indices < len(time))]] = 1.0 # convolution with kernel: rate = np.convolve(brate, kernel, mode="same") return rate def acausal_kde1d(spikes, time, width): """ causalkde computes a kernel density estimate using a causal kernel (i.e. exponential or gamma distribution). A shape of 1 turns the gamma distribution into an exponential. Parameters ---------- spikes : array-like spike times time : array-like sampling time width : float kernel width shape : int, optional shape of gamma distribution, by default 1 Returns ------- rate : array-like instantaneous firing rate """ # compute dt dt = time[1] - time[0] # time on which to compute kernel: tmax = 10 * width # kernel not wider than time if 2 * tmax > time[-1] - time[0]: tmax = 0.5 * (time[-1] - time[0]) # kernel time ktime = np.arange(-tmax, tmax, dt) # gamma kernel centered in ktime: kernel = norm.pdf( x=ktime, loc=0, scale=width, ) # indices of spikes in time array: indices = np.asarray((spikes - time[0]) / dt, dtype=int) # binary spike train: brate = np.zeros(len(time)) brate[indices[(indices >= 0) & (indices < len(time))]] = 1.0 # convolution with kernel: rate = np.convolve(brate, kernel, mode="same") return rate if __name__ == "__main__": timestamps = [ [1.2, 1.5, 1.3], [], [1.21, 1.51, 1.31], [1.19, 1.49, 1.29], [1.22, 1.52, 1.32], [1.2, 1.5, 1.3], ] print(group_timestamps(timestamps, 2, 0.05)) print(purge_duplicates([1, 2, 3, 4, 5, 6, 6.02, 7, 8, 8.02], 0.05))