import numpy as np import os import numpy as np from IPython import embed from pandas import read_csv from modules.logger import makeLogger logger = makeLogger(__name__) class Behavior: """Load behavior data from csv file as class attributes Attributes ---------- behavior: 0: chasing onset, 1: chasing offset, 2: physical contact behavior_type: behavioral_category: comment_start: comment_stop: dataframe: pandas dataframe with all the data duration_s: media_file: observation_date: observation_id: start_s: start time of the event in seconds stop_s: stop time of the event in seconds total_length: """ def __init__(self, folder_path: str) -> None: LED_on_time_BORIS = np.load(os.path.join(folder_path, 'LED_on_time.npy'), allow_pickle=True) csv_filename = [f for f in os.listdir(folder_path) if f.endswith('.csv')][0] logger.info(f'CSV file: {csv_filename}') self.dataframe = read_csv(os.path.join(folder_path, csv_filename)) self.chirps = np.load(os.path.join(folder_path, 'chirps.npy'), allow_pickle=True) self.chirps_ids = np.load(os.path.join(folder_path, 'chirp_ids.npy'), allow_pickle=True) self.ident = np.load(os.path.join(folder_path, 'ident_v.npy'), allow_pickle=True) self.idx = np.load(os.path.join(folder_path, 'idx_v.npy'), allow_pickle=True) self.freq = np.load(os.path.join(folder_path, 'fund_v.npy'), allow_pickle=True) self.time = np.load(os.path.join(folder_path, "times.npy"), allow_pickle=True) self.spec = np.load(os.path.join(folder_path, "spec.npy"), allow_pickle=True) for k, key in enumerate(self.dataframe.keys()): key = key.lower() if ' ' in key: key = key.replace(' ', '_') if '(' in key: key = key.replace('(', '') key = key.replace(')', '') setattr(self, key, np.array(self.dataframe[self.dataframe.keys()[k]])) last_LED_t_BORIS = LED_on_time_BORIS[-1] real_time_range = self.time[-1] - self.time[0] factor = 1.034141 shift = last_LED_t_BORIS - real_time_range * factor self.start_s = (self.start_s - shift) / factor self.stop_s = (self.stop_s - shift) / factor def correct_chasing_events( category: np.ndarray, timestamps: np.ndarray ) -> tuple[np.ndarray, np.ndarray]: onset_ids = np.arange( len(category))[category == 0] offset_ids = np.arange( len(category))[category == 1] woring_bh = np.arange(len(category))[category!=2][:-1][np.diff(category[category!=2])==0] if onset_ids[0] > offset_ids[0]: offset_ids = np.delete(offset_ids, 0) help_index = offset_ids[0] woring_bh = np.append(woring_bh, help_index) category = np.delete(category, woring_bh) timestamps = np.delete(timestamps, woring_bh) # Check whether on- or offset is longer and calculate length difference if len(onset_ids) > len(offset_ids): len_diff = len(onset_ids) - len(offset_ids) logger.info(f'Onsets are greater than offsets by {len_diff}') elif len(onset_ids) < len(offset_ids): len_diff = len(offset_ids) - len(onset_ids) logger.info(f'Offsets are greater than onsets by {len_diff}') elif len(onset_ids) == len(offset_ids): logger.info('Chasing events are equal') return category, timestamps