import numpy as np import os import numpy as np import matplotlib.pyplot as plt from thunderfish.powerspectrum import decibel from IPython import embed from pandas import read_csv from modules.logger import makeLogger from modules.plotstyle import PlotStyle from modules.behaviour_handling import Behavior, correct_chasing_events ps = PlotStyle() logger = makeLogger(__name__) def main(datapath: str): foldernames = [ datapath + x + '/' for x in os.listdir(datapath) if os.path.isdir(datapath+x)] path_order_meta = ( '/').join(foldernames[0].split('/')[:-2]) + '/order_meta.csv' order_meta_df = read_csv(path_order_meta) order_meta_df['recording'] = order_meta_df['recording'].str[1:-1] path_id_meta = ( '/').join(foldernames[0].split('/')[:-2]) + '/id_meta.csv' id_meta_df = read_csv(path_id_meta) chirps_winner = [] size_diff = [] chirps_loser = [] for foldername in foldernames: # behabvior is pandas dataframe with all the data if foldername == '../data/mount_data/2020-05-12-10_00/': continue bh = Behavior(foldername) # chirps are not sorted in time (presumably due to prior groupings) # get and sort chirps and corresponding fish_ids of the chirps category = bh.behavior timestamps = bh.start_s # Correct for doubles in chasing on- and offsets to get the right on-/offset pairs # Get rid of tracking faults (two onsets or two offsets after another) category, timestamps = correct_chasing_events(category, timestamps) folder_name = foldername.split('/')[-2] winner_row = order_meta_df[order_meta_df['recording'] == folder_name] winner = winner_row['winner'].values[0].astype(int) winner_fish1 = winner_row['fish1'].values[0].astype(int) winner_fish2 = winner_row['fish2'].values[0].astype(int) groub = winner_row['group'].values[0].astype(int) size_rows = id_meta_df[id_meta_df['group'] == groub] if winner == winner_fish1: winner_fish_id = winner_row['rec_id1'].values[0] loser_fish_id = winner_row['rec_id2'].values[0] size_winners = [] for l in ['l1', 'l2', 'l3']: size_winner = size_rows[size_rows['fish']== winner_fish1][l].values[0] size_winners.append(size_winner) mean_size_winner = np.nanmean(size_winners) size_losers = [] for l in ['l1', 'l2', 'l3']: size_loser = size_rows[size_rows['fish']== winner_fish2][l].values[0] size_losers.append(size_loser) mean_size_loser = np.nanmean(size_losers) size_diff.append(mean_size_winner - mean_size_loser) elif winner == winner_fish2: winner_fish_id = winner_row['rec_id2'].values[0] loser_fish_id = winner_row['rec_id1'].values[0] size_winners = [] for l in ['l1', 'l2', 'l3']: size_winner = size_rows[size_rows['fish']== winner_fish2][l].values[0] size_winners.append(size_winner) mean_size_winner = np.nanmean(size_winners) size_losers = [] for l in ['l1', 'l2', 'l3']: size_loser = size_rows[size_rows['fish']== winner_fish1][l].values[0] size_losers.append(size_loser) mean_size_loser = np.nanmean(size_losers) size_diff.append(mean_size_winner - mean_size_loser) else: continue print(foldername) all_fish_ids = np.unique(bh.chirps_ids) chirp_loser = len(bh.chirps[bh.chirps_ids == loser_fish_id]) chirp_winner = len(bh.chirps[bh.chirps_ids == winner_fish_id]) chirps_winner.append(chirp_winner) chirps_loser.append(chirp_loser) fish1_id = all_fish_ids[0] fish2_id = all_fish_ids[1] print(winner_fish_id) print(all_fish_ids) fig, (ax1, ax2) = plt.subplots(1,2, figsize=(10,5)) scatterwinner = 1.15 scatterloser = 1.85 bplot1 = ax1.boxplot(chirps_winner, positions=[ 1], showfliers=False, patch_artist=True) bplot2 = ax1.boxplot(chirps_loser, positions=[ 2], showfliers=False, patch_artist=True) ax1.scatter(np.ones(len(chirps_winner))*scatterwinner, chirps_winner, color='r') ax1.scatter(np.ones(len(chirps_loser))*scatterloser, chirps_loser, color='r') ax1.set_xticklabels(['winner', 'loser']) ax1.text(0.9, 0.9, f'n = {len(chirps_winner)}', transform=ax1.transAxes, color= ps.white) for w, l in zip(chirps_winner, chirps_loser): ax1.plot([scatterwinner, scatterloser], [w, l], color='r', alpha=0.5, linewidth=0.5) colors1 = ps.red ps.set_boxplot_color(bplot1, colors1) colors1 = ps.orange ps.set_boxplot_color(bplot2, colors1) ax1.set_ylabel('Chirpscounts [n]') ax2.scatter(size_w, chirps_winner, color='r') ax2.scatter(size_l, chirps_loser, color='green') plt.savefig('../poster/figs/chirps_winner_loser.pdf') plt.show() if __name__ == '__main__': # Path to the data datapath = '../data/mount_data/' main(datapath)