import numpy as np from IPython import embed import matplotlib.pyplot as plt from thunderfish import fakefish from modules.filters import bandpass_filter from modules.datahandling import instantaneous_frequency from modules.simulations import create_chirp # trying thunderfish fakefish chirp simulation --------------------------------- samplerate = 44100 freq, ampl = fakefish.chirps(eodf=500, chirp_contrast=0.2) data = fakefish.wavefish_eods( fish="Alepto", frequency=freq, phase0=3, samplerate=samplerate ) # filter signal with bandpass_filter data_filterd = bandpass_filter(data * ampl + 1, samplerate, 0.01, 1.99) embed() data_freq_time, data_freq = instantaneous_frequency(data, samplerate, 5) fig, ax = plt.subplots(4, 1, figsize=(20 / 2.54, 12 / 2.54), sharex=True) ax[0].plot(np.arange(len(data)) / samplerate, data * ampl) # ax[0].scatter(true_zero, np.zeros_like(true_zero), color='red') ax[1].plot(np.arange(len(data_filterd)) / samplerate, data_filterd) ax[2].plot(np.arange(len(freq)) / samplerate, freq) ax[3].plot(data_freq_time, data_freq) plt.show() embed()