from thunderfish.dataloader import DataLoader as open_data from thunderfish.powerspectrum import spectrogram, decibel from IPython import embed import matplotlib.pyplot as plt import numpy as np import os from scipy.ndimage import gaussian_filter1d from modules.filters import bandpass_filter from modules.filehandling import LoadData def main(folder): data = LoadData(folder) t0 = 3 * 60 * 60 + 6 * 60 + 43.5 dt = 60 data_oi = data.raw[t0 * data.raw_rate : (t0 + dt) * data.raw_rate, :] # good electrode electrode = 10 data_oi = data_oi[:, electrode] fig, axs = plt.subplots(2, 1) axs[0].plot(np.arange(data_oi.shape[0]) / data.raw_rate, data_oi) for tr, track_id in enumerate(np.unique(data.ident[~np.isnan(data.ident)])): rack_window_index = np.arange(len(data.idx))[ (data.ident == track_id) & (data.time[data.idx] >= t0) & (data.time[data.idx] <= (t0 + dt)) ] freq_fish = data.freq[rack_window_index] axs[1].plot(np.arange(freq_fish.shape[0]) / data.raw_rate, freq_fish) plt.show() if __name__ == "__main__": main( "/Users/acfw/Documents/uni_tuebingen/chirpdetection/GP2023_chirp_detection/data/2022-06-02-10_00/" )