implemented recording loop
This commit is contained in:
parent
f68630974f
commit
fda6821211
@ -32,13 +32,12 @@ class Behavior:
|
||||
|
||||
def __init__(self, folder_path: str) -> None:
|
||||
|
||||
|
||||
LED_on_time_BORIS = np.load(os.path.join(folder_path, 'LED_on_time.npy'), allow_pickle=True)
|
||||
self.time = np.load(os.path.join(folder_path, "times.npy"), allow_pickle=True)
|
||||
csv_filename = [f for f in os.listdir(folder_path) if f.endswith('.csv')][0] # check if there are more than one csv file
|
||||
self.dataframe = read_csv(os.path.join(folder_path, csv_filename))
|
||||
self.chirps = np.load(os.path.join(folder_path, 'chirps.npy'), allow_pickle=True)
|
||||
self.chirps_ids = np.load(os.path.join(folder_path, 'chirps_ids.npy'), allow_pickle=True)
|
||||
self.chirps_ids = np.load(os.path.join(folder_path, 'chirp_ids.npy'), allow_pickle=True)
|
||||
|
||||
for k, key in enumerate(self.dataframe.keys()):
|
||||
key = key.lower()
|
||||
@ -56,7 +55,6 @@ class Behavior:
|
||||
self.start_s = (self.start_s - shift) / factor
|
||||
self.stop_s = (self.stop_s - shift) / factor
|
||||
|
||||
|
||||
"""
|
||||
1 - chasing onset
|
||||
2 - chasing offset
|
||||
@ -95,34 +93,26 @@ def correct_chasing_events(
|
||||
offset_ids = np.arange(
|
||||
len(category))[category == 1]
|
||||
|
||||
wrong_bh = np.arange(len(category))[category!=2][:-1][np.diff(category[category!=2])==0]
|
||||
if onset_ids[0] > offset_ids[0]:
|
||||
offset_ids = np.delete(offset_ids, 0)
|
||||
help_index = offset_ids[0]
|
||||
wrong_bh = np.append(wrong_bh[help_index])
|
||||
|
||||
category = np.delete(category, wrong_bh)
|
||||
timestamps = np.delete(timestamps, wrong_bh)
|
||||
|
||||
|
||||
# Check whether on- or offset is longer and calculate length difference
|
||||
if len(onset_ids) > len(offset_ids):
|
||||
len_diff = len(onset_ids) - len(offset_ids)
|
||||
longer_array = onset_ids
|
||||
shorter_array = offset_ids
|
||||
logger.info(f'Onsets are greater than offsets by {len_diff}')
|
||||
elif len(onset_ids) < len(offset_ids):
|
||||
len_diff = len(offset_ids) - len(onset_ids)
|
||||
longer_array = offset_ids
|
||||
shorter_array = onset_ids
|
||||
logger.info(f'Offsets are greater than offsets by {len_diff}')
|
||||
logger.info(f'Offsets are greater than onsets by {len_diff}')
|
||||
elif len(onset_ids) == len(offset_ids):
|
||||
logger.info('Chasing events are equal')
|
||||
return category, timestamps
|
||||
|
||||
# Correct the wrong chasing events; delete double events
|
||||
wrong_ids = []
|
||||
for i in range(len(longer_array)-(len_diff+1)):
|
||||
if (shorter_array[i] > longer_array[i]) & (shorter_array[i] < longer_array[i+1]):
|
||||
pass
|
||||
else:
|
||||
wrong_ids.append(longer_array[i])
|
||||
longer_array = np.delete(longer_array, i)
|
||||
|
||||
category = np.delete(
|
||||
category, wrong_ids)
|
||||
timestamps = np.delete(
|
||||
timestamps, wrong_ids)
|
||||
return category, timestamps
|
||||
|
||||
|
||||
@ -158,44 +148,66 @@ def event_triggered_chirps(
|
||||
|
||||
def main(datapath: str):
|
||||
|
||||
# behavior is pandas dataframe with all the data
|
||||
bh = Behavior(datapath)
|
||||
foldernames = [datapath + x + '/' for x in os.listdir(datapath) if os.path.isdir(datapath + x)]
|
||||
|
||||
all_chirps = []
|
||||
all_chirps_fish_ids = []
|
||||
all_chasing_onsets = []
|
||||
all_chasing_offsets = []
|
||||
all_physicals = []
|
||||
|
||||
# chirps are not sorted in time (presumably due to prior groupings)
|
||||
# get and sort chirps and corresponding fish_ids of the chirps
|
||||
chirps = bh.chirps[np.argsort(bh.chirps)]
|
||||
chirps_fish_ids = bh.chirps_ids[np.argsort(bh.chirps)]
|
||||
for folder in foldernames:
|
||||
# exclude folder with empty LED_on_time.npy
|
||||
if folder == '../data/mount_data/2020-05-12-10_00/':
|
||||
continue
|
||||
|
||||
bh = Behavior(folder)
|
||||
|
||||
# Chirps are already sorted
|
||||
category = bh.behavior
|
||||
timestamps = bh.start_s
|
||||
chirps = bh.chirps
|
||||
all_chirps.append(chirps)
|
||||
chirps_fish_ids = bh.chirps_ids
|
||||
all_chirps_fish_ids.append(chirps_fish_ids)
|
||||
fish_ids = np.unique(chirps_fish_ids)
|
||||
|
||||
# Correct for doubles in chasing on- and offsets to get the right on-/offset pairs
|
||||
# Get rid of tracking faults (two onsets or two offsets after another)
|
||||
category, timestamps = correct_chasing_events(category, timestamps)
|
||||
|
||||
# split categories
|
||||
# Split categories
|
||||
chasing_onsets = timestamps[category == 0]
|
||||
all_chasing_onsets.append(chasing_onsets)
|
||||
chasing_offsets = timestamps[category == 1]
|
||||
all_chasing_offsets.append(chasing_offsets)
|
||||
physical_contacts = timestamps[category == 2]
|
||||
all_physicals.append(physical_contacts)
|
||||
|
||||
chasing_durations = []
|
||||
# Calculate chasing duration to evaluate a nice time window for kernel density estimation
|
||||
for onset, offset in zip(chasing_onsets, chasing_offsets):
|
||||
duration = offset - onset
|
||||
chasing_durations.append(duration)
|
||||
|
||||
embed()
|
||||
|
||||
|
||||
# chasing_durations = []
|
||||
# # Calculate chasing duration to evaluate a nice time window for kernel density estimation
|
||||
# for onset, offset in zip(chasing_onsets, chasing_offsets):
|
||||
# duration = offset - onset
|
||||
# chasing_durations.append(duration)
|
||||
|
||||
# fig, ax = plt.subplots()
|
||||
# ax.boxplot(chasing_durations)
|
||||
# plt.show()
|
||||
# plt.close()
|
||||
|
||||
# Get fish ids
|
||||
fish_ids = np.unique(chirps_fish_ids)
|
||||
|
||||
# # Associate chirps to individual fish
|
||||
# fish1 = chirps[chirps_fish_ids == fish_ids[0]]
|
||||
# fish2 = chirps[chirps_fish_ids == fish_ids[1]]
|
||||
# fish = [len(fish1), len(fish2)]
|
||||
|
||||
# Concolution over all recordings
|
||||
# Rasterplot for each recording
|
||||
|
||||
# Define time window for chirps around event analysis
|
||||
time_before_event = 30
|
||||
time_after_event = 60
|
||||
@ -282,97 +294,97 @@ def main(datapath: str):
|
||||
|
||||
|
||||
|
||||
#### Chirps around events, winner VS loser, one recording ####
|
||||
# Load file with fish ids and winner/loser info
|
||||
meta = pd.read_csv('../data/mount_data/order_meta.csv')
|
||||
current_recording = meta[meta.index == 43]
|
||||
fish1 = current_recording['rec_id1'].values
|
||||
fish2 = current_recording['rec_id2'].values
|
||||
# Implement check if fish_ids from meta and chirp detection are the same???
|
||||
winner = current_recording['winner'].values
|
||||
|
||||
if winner == fish1:
|
||||
loser = fish2
|
||||
elif winner == fish2:
|
||||
loser = fish1
|
||||
|
||||
winner_chirps = chirps[chirps_fish_ids == winner]
|
||||
loser_chirps = chirps[chirps_fish_ids == loser]
|
||||
|
||||
# Event triggered winner chirps
|
||||
_, winner_centered_onset, winner_cc_onset = event_triggered_chirps(chasing_onsets, winner_chirps, time_before_event, time_after_event, dt, width)
|
||||
_, winner_centered_offset, winner_cc_offset = event_triggered_chirps(chasing_offsets, winner_chirps, time_before_event, time_after_event, dt, width)
|
||||
_, winner_centered_physical, winner_cc_physical = event_triggered_chirps(physical_contacts, winner_chirps, time_before_event, time_after_event, dt, width)
|
||||
|
||||
# Event triggered loser chirps
|
||||
_, loser_centered_onset, loser_cc_onset = event_triggered_chirps(chasing_onsets, loser_chirps, time_before_event, time_after_event, dt, width)
|
||||
_, loser_centered_offset, loser_cc_offset = event_triggered_chirps(chasing_offsets, loser_chirps, time_before_event, time_after_event, dt, width)
|
||||
_, loser_centered_physical, loser_cc_physical = event_triggered_chirps(physical_contacts, loser_chirps, time_before_event, time_after_event, dt, width)
|
||||
|
||||
########## Winner VS Loser plot ##########
|
||||
fig, ax = plt.subplots(2, 3, figsize=(50 / 2.54, 15 / 2.54), constrained_layout=True, sharey='row')
|
||||
offset = [1.35]
|
||||
ax[1][0].set_xlabel('Time[s]')
|
||||
ax[1][1].set_xlabel('Time[s]')
|
||||
ax[1][2].set_xlabel('Time[s]')
|
||||
# Plot winner chasing onsets
|
||||
ax[0][0].set_ylabel('Chirp rate [Hz]')
|
||||
ax[0][0].plot(time, winner_cc_onset, color='tab:blue', zorder=100)
|
||||
ax0 = ax[0][0].twinx()
|
||||
ax0.eventplot(np.array([winner_centered_onset]), lineoffsets=offset, linelengths=0.1, colors=['tab:green'], alpha=0.25, zorder=-100)
|
||||
ax0.set_ylabel('Event')
|
||||
ax0.vlines(0, 0, 1.5, 'tab:grey', 'dashed')
|
||||
ax[0][0].set_zorder(ax0.get_zorder()+1)
|
||||
ax[0][0].patch.set_visible(False)
|
||||
ax0.set_yticklabels([])
|
||||
ax0.set_yticks([])
|
||||
# Plot winner chasing offets
|
||||
ax[0][1].plot(time, winner_cc_offset, color='tab:blue', zorder=100)
|
||||
ax1 = ax[0][1].twinx()
|
||||
ax1.eventplot(np.array([winner_centered_offset]), lineoffsets=offset, linelengths=0.1, colors=['tab:purple'], alpha=0.25, zorder=-100)
|
||||
ax1.vlines(0, 0, 1.5, 'tab:grey', 'dashed')
|
||||
ax[0][1].set_zorder(ax1.get_zorder()+1)
|
||||
ax[0][1].patch.set_visible(False)
|
||||
ax1.set_yticklabels([])
|
||||
ax1.set_yticks([])
|
||||
# Plot winner physical contacts
|
||||
ax[0][2].plot(time, winner_cc_physical, color='tab:blue', zorder=100)
|
||||
ax2 = ax[0][2].twinx()
|
||||
ax2.eventplot(np.array([winner_centered_physical]), lineoffsets=offset, linelengths=0.1, colors=['tab:red'], alpha=0.25, zorder=-100)
|
||||
ax2.vlines(0, 0, 1.5, 'tab:grey', 'dashed')
|
||||
ax[0][2].set_zorder(ax2.get_zorder()+1)
|
||||
ax[0][2].patch.set_visible(False)
|
||||
ax2.set_yticklabels([])
|
||||
ax2.set_yticks([])
|
||||
# Plot loser chasing onsets
|
||||
ax[1][0].set_ylabel('Chirp rate [Hz]')
|
||||
ax[1][0].plot(time, loser_cc_onset, color='tab:blue', zorder=100)
|
||||
ax3 = ax[1][0].twinx()
|
||||
ax3.eventplot(np.array([loser_centered_onset]), lineoffsets=offset, linelengths=0.1, colors=['tab:green'], alpha=0.25, zorder=-100)
|
||||
ax3.vlines(0, 0, 1.5, 'tab:grey', 'dashed')
|
||||
ax[1][0].set_zorder(ax3.get_zorder()+1)
|
||||
ax[1][0].patch.set_visible(False)
|
||||
ax3.set_yticklabels([])
|
||||
ax3.set_yticks([])
|
||||
# Plot loser chasing offsets
|
||||
ax[1][1].plot(time, loser_cc_offset, color='tab:blue', zorder=100)
|
||||
ax4 = ax[1][1].twinx()
|
||||
ax4.eventplot(np.array([loser_centered_offset]), lineoffsets=offset, linelengths=0.1, colors=['tab:purple'], alpha=0.25, zorder=-100)
|
||||
ax4.vlines(0, 0, 1.5, 'tab:grey', 'dashed')
|
||||
ax[1][1].set_zorder(ax4.get_zorder()+1)
|
||||
ax[1][1].patch.set_visible(False)
|
||||
ax4.set_yticklabels([])
|
||||
ax4.set_yticks([])
|
||||
# Plot loser physical contacts
|
||||
ax[1][2].plot(time, loser_cc_physical, color='tab:blue', zorder=100)
|
||||
ax5 = ax[1][2].twinx()
|
||||
ax5.eventplot(np.array([loser_centered_physical]), lineoffsets=offset, linelengths=0.1, colors=['tab:red'], alpha=0.25, zorder=-100)
|
||||
ax5.vlines(0, 0, 1.5, 'tab:grey', 'dashed')
|
||||
ax[1][2].set_zorder(ax5.get_zorder()+1)
|
||||
ax[1][2].patch.set_visible(False)
|
||||
ax5.set_yticklabels([])
|
||||
ax5.set_yticks([])
|
||||
plt.show()
|
||||
# #### Chirps around events, winner VS loser, one recording ####
|
||||
# # Load file with fish ids and winner/loser info
|
||||
# meta = pd.read_csv('../data/mount_data/order_meta.csv')
|
||||
# current_recording = meta[meta.index == 43]
|
||||
# fish1 = current_recording['rec_id1'].values
|
||||
# fish2 = current_recording['rec_id2'].values
|
||||
# # Implement check if fish_ids from meta and chirp detection are the same???
|
||||
# winner = current_recording['winner'].values
|
||||
|
||||
# if winner == fish1:
|
||||
# loser = fish2
|
||||
# elif winner == fish2:
|
||||
# loser = fish1
|
||||
|
||||
# winner_chirps = chirps[chirps_fish_ids == winner]
|
||||
# loser_chirps = chirps[chirps_fish_ids == loser]
|
||||
|
||||
# # Event triggered winner chirps
|
||||
# _, winner_centered_onset, winner_cc_onset = event_triggered_chirps(chasing_onsets, winner_chirps, time_before_event, time_after_event, dt, width)
|
||||
# _, winner_centered_offset, winner_cc_offset = event_triggered_chirps(chasing_offsets, winner_chirps, time_before_event, time_after_event, dt, width)
|
||||
# _, winner_centered_physical, winner_cc_physical = event_triggered_chirps(physical_contacts, winner_chirps, time_before_event, time_after_event, dt, width)
|
||||
|
||||
# # Event triggered loser chirps
|
||||
# _, loser_centered_onset, loser_cc_onset = event_triggered_chirps(chasing_onsets, loser_chirps, time_before_event, time_after_event, dt, width)
|
||||
# _, loser_centered_offset, loser_cc_offset = event_triggered_chirps(chasing_offsets, loser_chirps, time_before_event, time_after_event, dt, width)
|
||||
# _, loser_centered_physical, loser_cc_physical = event_triggered_chirps(physical_contacts, loser_chirps, time_before_event, time_after_event, dt, width)
|
||||
|
||||
# ########## Winner VS Loser plot ##########
|
||||
# fig, ax = plt.subplots(2, 3, figsize=(50 / 2.54, 15 / 2.54), constrained_layout=True, sharey='row')
|
||||
# offset = [1.35]
|
||||
# ax[1][0].set_xlabel('Time[s]')
|
||||
# ax[1][1].set_xlabel('Time[s]')
|
||||
# ax[1][2].set_xlabel('Time[s]')
|
||||
# # Plot winner chasing onsets
|
||||
# ax[0][0].set_ylabel('Chirp rate [Hz]')
|
||||
# ax[0][0].plot(time, winner_cc_onset, color='tab:blue', zorder=100)
|
||||
# ax0 = ax[0][0].twinx()
|
||||
# ax0.eventplot(np.array([winner_centered_onset]), lineoffsets=offset, linelengths=0.1, colors=['tab:green'], alpha=0.25, zorder=-100)
|
||||
# ax0.set_ylabel('Event')
|
||||
# ax0.vlines(0, 0, 1.5, 'tab:grey', 'dashed')
|
||||
# ax[0][0].set_zorder(ax0.get_zorder()+1)
|
||||
# ax[0][0].patch.set_visible(False)
|
||||
# ax0.set_yticklabels([])
|
||||
# ax0.set_yticks([])
|
||||
# # Plot winner chasing offets
|
||||
# ax[0][1].plot(time, winner_cc_offset, color='tab:blue', zorder=100)
|
||||
# ax1 = ax[0][1].twinx()
|
||||
# ax1.eventplot(np.array([winner_centered_offset]), lineoffsets=offset, linelengths=0.1, colors=['tab:purple'], alpha=0.25, zorder=-100)
|
||||
# ax1.vlines(0, 0, 1.5, 'tab:grey', 'dashed')
|
||||
# ax[0][1].set_zorder(ax1.get_zorder()+1)
|
||||
# ax[0][1].patch.set_visible(False)
|
||||
# ax1.set_yticklabels([])
|
||||
# ax1.set_yticks([])
|
||||
# # Plot winner physical contacts
|
||||
# ax[0][2].plot(time, winner_cc_physical, color='tab:blue', zorder=100)
|
||||
# ax2 = ax[0][2].twinx()
|
||||
# ax2.eventplot(np.array([winner_centered_physical]), lineoffsets=offset, linelengths=0.1, colors=['tab:red'], alpha=0.25, zorder=-100)
|
||||
# ax2.vlines(0, 0, 1.5, 'tab:grey', 'dashed')
|
||||
# ax[0][2].set_zorder(ax2.get_zorder()+1)
|
||||
# ax[0][2].patch.set_visible(False)
|
||||
# ax2.set_yticklabels([])
|
||||
# ax2.set_yticks([])
|
||||
# # Plot loser chasing onsets
|
||||
# ax[1][0].set_ylabel('Chirp rate [Hz]')
|
||||
# ax[1][0].plot(time, loser_cc_onset, color='tab:blue', zorder=100)
|
||||
# ax3 = ax[1][0].twinx()
|
||||
# ax3.eventplot(np.array([loser_centered_onset]), lineoffsets=offset, linelengths=0.1, colors=['tab:green'], alpha=0.25, zorder=-100)
|
||||
# ax3.vlines(0, 0, 1.5, 'tab:grey', 'dashed')
|
||||
# ax[1][0].set_zorder(ax3.get_zorder()+1)
|
||||
# ax[1][0].patch.set_visible(False)
|
||||
# ax3.set_yticklabels([])
|
||||
# ax3.set_yticks([])
|
||||
# # Plot loser chasing offsets
|
||||
# ax[1][1].plot(time, loser_cc_offset, color='tab:blue', zorder=100)
|
||||
# ax4 = ax[1][1].twinx()
|
||||
# ax4.eventplot(np.array([loser_centered_offset]), lineoffsets=offset, linelengths=0.1, colors=['tab:purple'], alpha=0.25, zorder=-100)
|
||||
# ax4.vlines(0, 0, 1.5, 'tab:grey', 'dashed')
|
||||
# ax[1][1].set_zorder(ax4.get_zorder()+1)
|
||||
# ax[1][1].patch.set_visible(False)
|
||||
# ax4.set_yticklabels([])
|
||||
# ax4.set_yticks([])
|
||||
# # Plot loser physical contacts
|
||||
# ax[1][2].plot(time, loser_cc_physical, color='tab:blue', zorder=100)
|
||||
# ax5 = ax[1][2].twinx()
|
||||
# ax5.eventplot(np.array([loser_centered_physical]), lineoffsets=offset, linelengths=0.1, colors=['tab:red'], alpha=0.25, zorder=-100)
|
||||
# ax5.vlines(0, 0, 1.5, 'tab:grey', 'dashed')
|
||||
# ax[1][2].set_zorder(ax5.get_zorder()+1)
|
||||
# ax[1][2].patch.set_visible(False)
|
||||
# ax5.set_yticklabels([])
|
||||
# ax5.set_yticks([])
|
||||
# plt.show()
|
||||
# plt.close()
|
||||
|
||||
|
||||
@ -392,5 +404,5 @@ def main(datapath: str):
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Path to the data
|
||||
datapath = '../data/mount_data/2020-05-13-10_00/'
|
||||
datapath = '../data/mount_data/'
|
||||
main(datapath)
|
||||
|
Loading…
Reference in New Issue
Block a user