adding first script
This commit is contained in:
parent
eb957d0be9
commit
ed3791bc0d
106
code/analaysis.py
Normal file
106
code/analaysis.py
Normal file
@ -0,0 +1,106 @@
|
||||
from thunderfish.dataloader import DataLoader as open_data
|
||||
from thunderfish.powerspectrum import spectrogram, decibel
|
||||
from IPython import embed
|
||||
from audioio import play
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import os
|
||||
from scipy.ndimage import gaussian_filter1d
|
||||
from modules.filters import bandpass_filter
|
||||
|
||||
|
||||
def main(folder):
|
||||
file = os.path.join(folder, 'traces-grid.raw')
|
||||
data = open_data(folder, 60.0, 0, channel=-1)
|
||||
time = np.load(folder + 'times.npy', allow_pickle=True)
|
||||
freq = np.load(folder + 'fund_v.npy', allow_pickle=True)
|
||||
ident = np.load(folder + 'ident_v.npy', allow_pickle=True)
|
||||
idx = np.load(folder + 'idx_v.npy', allow_pickle=True)
|
||||
|
||||
t0 = 3*60*60 + 6*60 + 43.5
|
||||
dt = 60
|
||||
data_oi = data[t0 * data.samplerate: (t0+dt)*data.samplerate, :]
|
||||
|
||||
for i in [10]:
|
||||
# getting the spectogramm
|
||||
spec_power, spec_freqs, spec_times = spectrogram(
|
||||
data_oi[:, i], ratetime=data.samplerate, freq_resolution=50, overlap_frac=0.0)
|
||||
fig, ax = plt.subplots(figsize=(20/2.54, 12/2.54))
|
||||
ax.pcolormesh(spec_times, spec_freqs, decibel(
|
||||
spec_power), vmin=-100, vmax=-50)
|
||||
|
||||
for track_id in np.unique(ident):
|
||||
# window_index for time array in time window
|
||||
window_index = np.arange(len(idx))[(ident == track_id) &
|
||||
(time[idx] >= t0) &
|
||||
(time[idx] <= (t0+dt))]
|
||||
freq_temp = freq[window_index]
|
||||
time_temp = time[idx[window_index]]
|
||||
#mean_freq = np.mean(freq_temp)
|
||||
#fdata = bandpass_filter(data_oi[:, track_id], data.samplerate, mean_freq-5, mean_freq+200)
|
||||
ax.plot(time_temp - t0, freq_temp)
|
||||
|
||||
ax.set_ylim(500, 1000)
|
||||
plt.show()
|
||||
# filter plot
|
||||
id = 10.
|
||||
i = 10
|
||||
window_index = np.arange(len(idx))[(ident == id) &
|
||||
(time[idx] >= t0) &
|
||||
(time[idx] <= (t0+dt))]
|
||||
freq_temp = freq[window_index]
|
||||
time_temp = time[idx[window_index]]
|
||||
mean_freq = np.mean(freq_temp)
|
||||
fdata = bandpass_filter(data_oi[:, i], rate=data.samplerate, lowf=mean_freq-5, highf=mean_freq+200)
|
||||
fig, ax = plt.subplots()
|
||||
ax.plot(np.arange(len(fdata))/data.samplerate, fdata, marker='*')
|
||||
#plt.show()
|
||||
#freqency analyis of filtered data
|
||||
|
||||
time_fdata = np.arange(len(fdata))/data.samplerate
|
||||
roll_fdata = np.roll(fdata, shift=1)
|
||||
period_index = np.arange(len(fdata))[(roll_fdata < 0) & (fdata>=0)]
|
||||
|
||||
plt.plot(time_fdata, fdata)
|
||||
plt.scatter(time_fdata[period_index], fdata[period_index], c='r')
|
||||
plt.scatter(time_fdata[period_index-1], fdata[period_index-1], c='r')
|
||||
|
||||
upper_bound = np.abs(fdata[period_index])
|
||||
lower_bound = np.abs(fdata[period_index-1])
|
||||
|
||||
upper_times = np.abs(time_fdata[period_index])
|
||||
lower_times = np.abs(time_fdata[period_index-1])
|
||||
|
||||
lower_ratio = lower_bound/(lower_bound+upper_bound)
|
||||
upper_ratio = upper_bound/(lower_bound+upper_bound)
|
||||
|
||||
time_delta = upper_times-lower_times
|
||||
true_zero = lower_times + time_delta*lower_ratio
|
||||
|
||||
plt.scatter(true_zero, np.zeros(len(true_zero)))
|
||||
|
||||
# calculate the frequency
|
||||
inst_freq = 1 / np.diff(true_zero)
|
||||
filtered_inst_freq = gaussian_filter1d(inst_freq, 0.005)
|
||||
fig, ax = plt.subplots()
|
||||
ax.plot(filtered_inst_freq, marker='.')
|
||||
# in 5 sekunden welcher fisch auf einer elektrode am
|
||||
|
||||
|
||||
|
||||
|
||||
embed()
|
||||
exit()
|
||||
|
||||
# data of intrests
|
||||
|
||||
# first look at the raw data, channel 11 is important
|
||||
# fig, ax = plt.subplots(figsize=(20/2.54, 12/2.54))
|
||||
# ax.plot(np.arange(len(data_oi[:, i])), data_oi[:, i])
|
||||
|
||||
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main('/Users/acfw/Documents/uni_tuebingen/chirpdetection/gp_benda/data/2022-06-02-10_00/')
|
Loading…
Reference in New Issue
Block a user