adding first script

This commit is contained in:
wendtalexander 2023-01-11 13:58:25 +01:00
parent eb957d0be9
commit ed3791bc0d

106
code/analaysis.py Normal file
View File

@ -0,0 +1,106 @@
from thunderfish.dataloader import DataLoader as open_data
from thunderfish.powerspectrum import spectrogram, decibel
from IPython import embed
from audioio import play
import matplotlib.pyplot as plt
import numpy as np
import os
from scipy.ndimage import gaussian_filter1d
from modules.filters import bandpass_filter
def main(folder):
file = os.path.join(folder, 'traces-grid.raw')
data = open_data(folder, 60.0, 0, channel=-1)
time = np.load(folder + 'times.npy', allow_pickle=True)
freq = np.load(folder + 'fund_v.npy', allow_pickle=True)
ident = np.load(folder + 'ident_v.npy', allow_pickle=True)
idx = np.load(folder + 'idx_v.npy', allow_pickle=True)
t0 = 3*60*60 + 6*60 + 43.5
dt = 60
data_oi = data[t0 * data.samplerate: (t0+dt)*data.samplerate, :]
for i in [10]:
# getting the spectogramm
spec_power, spec_freqs, spec_times = spectrogram(
data_oi[:, i], ratetime=data.samplerate, freq_resolution=50, overlap_frac=0.0)
fig, ax = plt.subplots(figsize=(20/2.54, 12/2.54))
ax.pcolormesh(spec_times, spec_freqs, decibel(
spec_power), vmin=-100, vmax=-50)
for track_id in np.unique(ident):
# window_index for time array in time window
window_index = np.arange(len(idx))[(ident == track_id) &
(time[idx] >= t0) &
(time[idx] <= (t0+dt))]
freq_temp = freq[window_index]
time_temp = time[idx[window_index]]
#mean_freq = np.mean(freq_temp)
#fdata = bandpass_filter(data_oi[:, track_id], data.samplerate, mean_freq-5, mean_freq+200)
ax.plot(time_temp - t0, freq_temp)
ax.set_ylim(500, 1000)
plt.show()
# filter plot
id = 10.
i = 10
window_index = np.arange(len(idx))[(ident == id) &
(time[idx] >= t0) &
(time[idx] <= (t0+dt))]
freq_temp = freq[window_index]
time_temp = time[idx[window_index]]
mean_freq = np.mean(freq_temp)
fdata = bandpass_filter(data_oi[:, i], rate=data.samplerate, lowf=mean_freq-5, highf=mean_freq+200)
fig, ax = plt.subplots()
ax.plot(np.arange(len(fdata))/data.samplerate, fdata, marker='*')
#plt.show()
#freqency analyis of filtered data
time_fdata = np.arange(len(fdata))/data.samplerate
roll_fdata = np.roll(fdata, shift=1)
period_index = np.arange(len(fdata))[(roll_fdata < 0) & (fdata>=0)]
plt.plot(time_fdata, fdata)
plt.scatter(time_fdata[period_index], fdata[period_index], c='r')
plt.scatter(time_fdata[period_index-1], fdata[period_index-1], c='r')
upper_bound = np.abs(fdata[period_index])
lower_bound = np.abs(fdata[period_index-1])
upper_times = np.abs(time_fdata[period_index])
lower_times = np.abs(time_fdata[period_index-1])
lower_ratio = lower_bound/(lower_bound+upper_bound)
upper_ratio = upper_bound/(lower_bound+upper_bound)
time_delta = upper_times-lower_times
true_zero = lower_times + time_delta*lower_ratio
plt.scatter(true_zero, np.zeros(len(true_zero)))
# calculate the frequency
inst_freq = 1 / np.diff(true_zero)
filtered_inst_freq = gaussian_filter1d(inst_freq, 0.005)
fig, ax = plt.subplots()
ax.plot(filtered_inst_freq, marker='.')
# in 5 sekunden welcher fisch auf einer elektrode am
embed()
exit()
# data of intrests
# first look at the raw data, channel 11 is important
# fig, ax = plt.subplots(figsize=(20/2.54, 12/2.54))
# ax.plot(np.arange(len(data_oi[:, i])), data_oi[:, i])
pass
if __name__ == '__main__':
main('/Users/acfw/Documents/uni_tuebingen/chirpdetection/gp_benda/data/2022-06-02-10_00/')