Merge branch 'master' into eventtriggeredchirps
zsh:1: command not found: q
This commit is contained in:
commit
dc2074222c
@ -18,6 +18,7 @@ from modules.datahandling import (
|
||||
purge_duplicates,
|
||||
group_timestamps,
|
||||
instantaneous_frequency,
|
||||
minmaxnorm
|
||||
)
|
||||
|
||||
logger = makeLogger(__name__)
|
||||
@ -26,7 +27,7 @@ ps = PlotStyle()
|
||||
|
||||
|
||||
@dataclass
|
||||
class PlotBuffer:
|
||||
class ChirpPlotBuffer:
|
||||
|
||||
"""
|
||||
Buffer to save data that is created in the main detection loop
|
||||
@ -83,6 +84,7 @@ class PlotBuffer:
|
||||
q50 + self.search_frequency + self.config.minimal_bandwidth / 2,
|
||||
q50 + self.search_frequency - self.config.minimal_bandwidth / 2,
|
||||
)
|
||||
print(search_upper, search_lower)
|
||||
|
||||
# get indices on raw data
|
||||
start_idx = (self.t0 - 5) * self.data.raw_rate
|
||||
@ -94,7 +96,8 @@ class PlotBuffer:
|
||||
|
||||
self.time = self.time - self.t0
|
||||
self.frequency_time = self.frequency_time - self.t0
|
||||
chirps = np.asarray(chirps) - self.t0
|
||||
if len(chirps) > 0:
|
||||
chirps = np.asarray(chirps) - self.t0
|
||||
self.t0_old = self.t0
|
||||
self.t0 = 0
|
||||
|
||||
@ -130,7 +133,7 @@ class PlotBuffer:
|
||||
data_oi,
|
||||
self.data.raw_rate,
|
||||
self.t0 - 5,
|
||||
[np.min(self.frequency) - 200, np.max(self.frequency) + 200]
|
||||
[np.min(self.frequency) - 100, np.max(self.frequency) + 200]
|
||||
)
|
||||
|
||||
for track_id in self.data.ids:
|
||||
@ -181,10 +184,11 @@ class PlotBuffer:
|
||||
# spec_times[0], spec_times[-1],
|
||||
# color=ps.gblue2, lw=2, ls="dashed")
|
||||
|
||||
for chirp in chirps:
|
||||
ax0.scatter(
|
||||
chirp, np.median(self.frequency) + 150, c=ps.black, marker="v"
|
||||
)
|
||||
if len(chirps) > 0:
|
||||
for chirp in chirps:
|
||||
ax0.scatter(
|
||||
chirp, np.median(self.frequency) + 150, c=ps.black, marker="v"
|
||||
)
|
||||
|
||||
# plot waveform of filtered signal
|
||||
ax1.plot(self.time, self.baseline * waveform_scaler,
|
||||
@ -319,7 +323,7 @@ def plot_spectrogram(
|
||||
aspect="auto",
|
||||
origin="lower",
|
||||
interpolation="gaussian",
|
||||
alpha=1,
|
||||
alpha=0.6,
|
||||
)
|
||||
# axis.use_sticky_edges = False
|
||||
return spec_times
|
||||
@ -432,6 +436,28 @@ def window_median_all_track_ids(
|
||||
return frequency_percentiles, track_ids
|
||||
|
||||
|
||||
def array_center(array: np.ndarray) -> float:
|
||||
"""
|
||||
Return the center value of an array.
|
||||
If the array length is even, returns
|
||||
the mean of the two center values.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
array : np.ndarray
|
||||
Array to calculate the center from.
|
||||
|
||||
Returns
|
||||
-------
|
||||
float
|
||||
|
||||
"""
|
||||
if len(array) % 2 == 0:
|
||||
return np.mean(array[int(len(array) / 2) - 1:int(len(array) / 2) + 1])
|
||||
else:
|
||||
return array[int(len(array) / 2)]
|
||||
|
||||
|
||||
def find_searchband(
|
||||
current_frequency: np.ndarray,
|
||||
percentiles_ids: np.ndarray,
|
||||
@ -465,10 +491,10 @@ def find_searchband(
|
||||
# frequency window where second filter filters is potentially allowed
|
||||
# to filter. This is the search window, in which we want to find
|
||||
# a gap in the other fish's EODs.
|
||||
|
||||
current_median = np.median(current_frequency)
|
||||
search_window = np.arange(
|
||||
np.median(current_frequency) + config.search_df_lower,
|
||||
np.median(current_frequency) + config.search_df_upper,
|
||||
current_median + config.search_df_lower,
|
||||
current_median + config.search_df_upper,
|
||||
config.search_res,
|
||||
)
|
||||
|
||||
@ -483,7 +509,7 @@ def find_searchband(
|
||||
|
||||
# get tracks that fall into search window
|
||||
check_track_ids = percentiles_ids[
|
||||
(q25 > search_window[0]) & (
|
||||
(q25 > current_median) & (
|
||||
q75 < search_window[-1])
|
||||
]
|
||||
|
||||
@ -511,6 +537,9 @@ def find_searchband(
|
||||
nonzeros = search_window_gaps[np.nonzero(search_window_gaps)[0]]
|
||||
nonzeros = nonzeros[~np.isnan(nonzeros)]
|
||||
|
||||
if len(nonzeros) == 0:
|
||||
return config.default_search_freq
|
||||
|
||||
# if the first value is -1, the array starst with true, so a gap
|
||||
if nonzeros[0] == -1:
|
||||
stops = search_window_indices[search_window_gaps == -1]
|
||||
@ -545,16 +574,14 @@ def find_searchband(
|
||||
# the center of the search frequency band is then the center of
|
||||
# the longest gap
|
||||
|
||||
search_freq = (
|
||||
longest_search_window[-1] - longest_search_window[0]
|
||||
) / 2
|
||||
search_freq = array_center(longest_search_window) - current_median
|
||||
|
||||
return search_freq
|
||||
|
||||
return config.default_search_freq
|
||||
|
||||
|
||||
def chirpdetection(datapath: str, plot: str) -> None:
|
||||
def chirpdetection(datapath: str, plot: str, debug: str = 'false') -> None:
|
||||
|
||||
assert plot in [
|
||||
"save",
|
||||
@ -562,6 +589,15 @@ def chirpdetection(datapath: str, plot: str) -> None:
|
||||
"false",
|
||||
], "plot must be 'save', 'show' or 'false'"
|
||||
|
||||
assert debug in [
|
||||
"false",
|
||||
"electrode",
|
||||
"fish",
|
||||
], "debug must be 'false', 'electrode' or 'fish'"
|
||||
|
||||
if debug != "false":
|
||||
assert plot == "show", "debug mode only runs when plot is 'show'"
|
||||
|
||||
# load raw file
|
||||
print('datapath', datapath)
|
||||
data = LoadData(datapath)
|
||||
@ -592,8 +628,8 @@ def chirpdetection(datapath: str, plot: str) -> None:
|
||||
raw_time = np.arange(data.raw.shape[0]) / data.raw_rate
|
||||
|
||||
# good chirp times for data: 2022-06-02-10_00
|
||||
window_start_index = (3 * 60 * 60 + 6 * 60 + 43.5 + 5) * data.raw_rate
|
||||
window_duration_index = 60 * data.raw_rate
|
||||
# window_start_index = (3 * 60 * 60 + 6 * 60 + 43.5 + 5) * data.raw_rate
|
||||
# window_duration_index = 60 * data.raw_rate
|
||||
|
||||
# t0 = 0
|
||||
# dt = data.raw.shape[0]
|
||||
@ -753,11 +789,11 @@ def chirpdetection(datapath: str, plot: str) -> None:
|
||||
|
||||
baseline_envelope = -baseline_envelope
|
||||
|
||||
baseline_envelope = envelope(
|
||||
signal=baseline_envelope,
|
||||
samplerate=data.raw_rate,
|
||||
cutoff_frequency=config.baseline_envelope_envelope_cutoff,
|
||||
)
|
||||
# baseline_envelope = envelope(
|
||||
# signal=baseline_envelope,
|
||||
# samplerate=data.raw_rate,
|
||||
# cutoff_frequency=config.baseline_envelope_envelope_cutoff,
|
||||
# )
|
||||
|
||||
# compute the envelope of the search band. Peaks in the search
|
||||
# band envelope correspond to troughs in the baseline envelope
|
||||
@ -791,25 +827,25 @@ def chirpdetection(datapath: str, plot: str) -> None:
|
||||
# compute the envelope of the signal to remove the oscillations
|
||||
# around the peaks
|
||||
|
||||
baseline_frequency_samplerate = np.mean(
|
||||
np.diff(baseline_frequency_time)
|
||||
)
|
||||
# baseline_frequency_samplerate = np.mean(
|
||||
# np.diff(baseline_frequency_time)
|
||||
# )
|
||||
|
||||
baseline_frequency_filtered = np.abs(
|
||||
baseline_frequency - np.median(baseline_frequency)
|
||||
)
|
||||
|
||||
baseline_frequency_filtered = highpass_filter(
|
||||
signal=baseline_frequency_filtered,
|
||||
samplerate=baseline_frequency_samplerate,
|
||||
cutoff=config.baseline_frequency_highpass_cutoff,
|
||||
)
|
||||
# baseline_frequency_filtered = highpass_filter(
|
||||
# signal=baseline_frequency_filtered,
|
||||
# samplerate=baseline_frequency_samplerate,
|
||||
# cutoff=config.baseline_frequency_highpass_cutoff,
|
||||
# )
|
||||
|
||||
baseline_frequency_filtered = envelope(
|
||||
signal=-baseline_frequency_filtered,
|
||||
samplerate=baseline_frequency_samplerate,
|
||||
cutoff_frequency=config.baseline_frequency_envelope_cutoff,
|
||||
)
|
||||
# baseline_frequency_filtered = envelope(
|
||||
# signal=-baseline_frequency_filtered,
|
||||
# samplerate=baseline_frequency_samplerate,
|
||||
# cutoff_frequency=config.baseline_frequency_envelope_cutoff,
|
||||
# )
|
||||
|
||||
# CUT OFF OVERLAP ---------------------------------------------
|
||||
|
||||
@ -850,9 +886,9 @@ def chirpdetection(datapath: str, plot: str) -> None:
|
||||
# normalize all three feature arrays to the same range to make
|
||||
# peak detection simpler
|
||||
|
||||
baseline_envelope = normalize([baseline_envelope])[0]
|
||||
search_envelope = normalize([search_envelope])[0]
|
||||
baseline_frequency_filtered = normalize(
|
||||
baseline_envelope = minmaxnorm([baseline_envelope])[0]
|
||||
search_envelope = minmaxnorm([search_envelope])[0]
|
||||
baseline_frequency_filtered = minmaxnorm(
|
||||
[baseline_frequency_filtered]
|
||||
)[0]
|
||||
|
||||
@ -893,7 +929,7 @@ def chirpdetection(datapath: str, plot: str) -> None:
|
||||
or len(frequency_peak_timestamps) == 0
|
||||
)
|
||||
|
||||
if one_feature_empty:
|
||||
if one_feature_empty and (debug == 'false'):
|
||||
continue
|
||||
|
||||
# group peak across feature arrays but only if they
|
||||
@ -914,7 +950,7 @@ def chirpdetection(datapath: str, plot: str) -> None:
|
||||
# check it there are chirps detected after grouping, continue
|
||||
# with the loop if not
|
||||
|
||||
if len(singleelectrode_chirps) == 0:
|
||||
if (len(singleelectrode_chirps) == 0) and (debug == 'false'):
|
||||
continue
|
||||
|
||||
# append chirps from this electrode to the multilectrode list
|
||||
@ -925,12 +961,12 @@ def chirpdetection(datapath: str, plot: str) -> None:
|
||||
& (plot in ["show", "save"])
|
||||
)
|
||||
|
||||
if chirp_detected:
|
||||
if chirp_detected or (debug != 'elecrode'):
|
||||
|
||||
logger.debug("Detected chirp, ititialize buffer ...")
|
||||
|
||||
# save data to Buffer
|
||||
buffer = PlotBuffer(
|
||||
buffer = ChirpPlotBuffer(
|
||||
config=config,
|
||||
t0=window_start_seconds,
|
||||
dt=window_duration_seconds,
|
||||
@ -955,6 +991,11 @@ def chirpdetection(datapath: str, plot: str) -> None:
|
||||
|
||||
logger.debug("Buffer initialized!")
|
||||
|
||||
if debug == "electrode":
|
||||
logger.info(f'Plotting electrode {el} ...')
|
||||
buffer.plot_buffer(
|
||||
chirps=singleelectrode_chirps, plot=plot)
|
||||
|
||||
logger.debug(
|
||||
f"Processed all electrodes for fish {track_id} for this"
|
||||
"window, sorting chirps ..."
|
||||
@ -963,7 +1004,7 @@ def chirpdetection(datapath: str, plot: str) -> None:
|
||||
# check if there are chirps detected in multiple electrodes and
|
||||
# continue the loop if not
|
||||
|
||||
if len(multielectrode_chirps) == 0:
|
||||
if (len(multielectrode_chirps) == 0) and (debug == 'false'):
|
||||
continue
|
||||
|
||||
# validate multielectrode chirps, i.e. check if they are
|
||||
@ -988,12 +1029,17 @@ def chirpdetection(datapath: str, plot: str) -> None:
|
||||
# if chirps are detected and the plot flag is set, plot the
|
||||
# chirps, otheswise try to delete the buffer if it exists
|
||||
|
||||
if ((len(multielectrode_chirps_validated) > 0) & (plot in ["show", "save"])):
|
||||
if debug == "fish":
|
||||
logger.info(f'Plotting fish {track_id} ...')
|
||||
buffer.plot_buffer(multielectrode_chirps_validated, plot)
|
||||
|
||||
if ((len(multielectrode_chirps_validated) > 0) &
|
||||
(plot in ["show", "save"]) & (debug == 'false')):
|
||||
try:
|
||||
buffer.plot_buffer(multielectrode_chirps_validated, plot)
|
||||
del buffer
|
||||
except NameError:
|
||||
embed()
|
||||
pass
|
||||
else:
|
||||
try:
|
||||
del buffer
|
||||
@ -1051,4 +1097,4 @@ if __name__ == "__main__":
|
||||
datapath = "../data/2022-06-02-10_00/"
|
||||
# datapath = "/home/weygoldt/Data/uni/efishdata/2016-colombia/fishgrid/2016-04-09-22_25/"
|
||||
# datapath = "/home/weygoldt/Data/uni/chirpdetection/GP2023_chirp_detection/data/mount_data/2020-03-13-10_00/"
|
||||
chirpdetection(datapath, plot="show")
|
||||
chirpdetection(datapath, plot="show", debug="fish")
|
||||
|
@ -19,29 +19,29 @@ baseline_frequency_smoothing: 5
|
||||
|
||||
# Baseline processing parameters
|
||||
baseline_envelope_cutoff: 25
|
||||
baseline_envelope_bandpass_lowf: 4
|
||||
baseline_envelope_bandpass_lowf: 2
|
||||
baseline_envelope_bandpass_highf: 100
|
||||
baseline_envelope_envelope_cutoff: 4
|
||||
# baseline_envelope_envelope_cutoff: 4
|
||||
|
||||
# search envelope processing parameters
|
||||
search_envelope_cutoff: 5
|
||||
search_envelope_cutoff: 10
|
||||
|
||||
# Instantaneous frequency bandpass filter cutoff frequencies
|
||||
baseline_frequency_highpass_cutoff: 0.000005
|
||||
baseline_frequency_envelope_cutoff: 0.000005
|
||||
# baseline_frequency_highpass_cutoff: 0.000005
|
||||
# baseline_frequency_envelope_cutoff: 0.000005
|
||||
|
||||
# peak detecion parameters
|
||||
prominence: 0.005
|
||||
prominence: 0.7
|
||||
|
||||
# search freq parameter
|
||||
search_df_lower: 20
|
||||
search_df_upper: 100
|
||||
search_res: 1
|
||||
search_bandwidth: 10
|
||||
default_search_freq: 50
|
||||
search_bandwidth: 20
|
||||
default_search_freq: 60
|
||||
|
||||
# Classify events as chirps if they are less than this time apart
|
||||
chirp_window_threshold: 0.05
|
||||
chirp_window_threshold: 0.015
|
||||
|
||||
|
||||
|
||||
|
@ -1,4 +1,5 @@
|
||||
import os
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from chirpdetection import chirpdetection
|
||||
from IPython import embed
|
||||
@ -7,7 +8,7 @@ from IPython import embed
|
||||
def main(datapaths):
|
||||
|
||||
for path in datapaths:
|
||||
chirpdetection(path, plot='show')
|
||||
chirpdetection(path, plot='show', debug='electrode')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
@ -39,6 +40,9 @@ if __name__ == '__main__':
|
||||
|
||||
datapaths = [os.path.join(dataroot, dataset) +
|
||||
'/' for dataset in valid_datasets]
|
||||
embed()
|
||||
|
||||
main(datapaths[3])
|
||||
recs = pd.DataFrame(columns=['recording'], data=valid_datasets)
|
||||
recs.to_csv('../recs.csv', index=False)
|
||||
# main(datapaths)
|
||||
|
||||
# window 1524 + 244 in dataset index 4 is nice example
|
||||
|
35
code/get_behaviour.py
Normal file
35
code/get_behaviour.py
Normal file
@ -0,0 +1,35 @@
|
||||
import os
|
||||
from paramiko import SSHClient
|
||||
from scp import SCPClient
|
||||
from IPython import embed
|
||||
from pandas import read_csv
|
||||
|
||||
ssh = SSHClient()
|
||||
ssh.load_system_host_keys()
|
||||
|
||||
ssh.connect(hostname='kraken',
|
||||
username='efish',
|
||||
password='fwNix4U',
|
||||
)
|
||||
|
||||
|
||||
# SCPCLient takes a paramiko transport as its only argument
|
||||
scp = SCPClient(ssh.get_transport())
|
||||
|
||||
data = read_csv('../recs.csv')
|
||||
foldernames = data['recording'].values
|
||||
|
||||
directory = f'/Users/acfw/Documents/uni_tuebingen/chirpdetection/GP2023_chirp_detection/data/mount_data/'
|
||||
for foldername in foldernames:
|
||||
|
||||
if not os.path.exists(directory+foldername):
|
||||
os.makedirs(directory+foldername)
|
||||
|
||||
files = [('-').join(foldername.split('-')[:3])+'.csv','chirp_ids.npy', 'chirps.npy', 'fund_v.npy', 'ident_v.npy', 'idx_v.npy', 'times.npy', 'spec.npy', 'LED_on_time.npy', 'sign_v.npy']
|
||||
|
||||
|
||||
for f in files:
|
||||
scp.get(f'/home/efish/behavior/2019_tube_competition/{foldername}/{f}',
|
||||
directory+foldername)
|
||||
|
||||
scp.close()
|
@ -4,7 +4,7 @@ from scipy.ndimage import gaussian_filter1d
|
||||
from scipy.stats import gamma, norm
|
||||
|
||||
|
||||
def scale01(data):
|
||||
def minmaxnorm(data):
|
||||
"""
|
||||
Normalize data to [0, 1]
|
||||
|
||||
@ -19,7 +19,7 @@ def scale01(data):
|
||||
Normalized data.
|
||||
|
||||
"""
|
||||
return (2*((data - np.min(data)) / (np.max(data) - np.min(data)))) - 1
|
||||
return (data - np.min(data)) / (np.max(data) - np.min(data))
|
||||
|
||||
|
||||
def instantaneous_frequency(
|
||||
@ -168,6 +168,9 @@ def group_timestamps(
|
||||
]
|
||||
timestamps.sort()
|
||||
|
||||
if len(timestamps) == 0:
|
||||
return []
|
||||
|
||||
groups = []
|
||||
current_group = [timestamps[0]]
|
||||
|
||||
|
29
recs.csv
Normal file
29
recs.csv
Normal file
@ -0,0 +1,29 @@
|
||||
recording
|
||||
2020-03-13-10_00
|
||||
2020-03-16-10_00
|
||||
2020-03-19-10_00
|
||||
2020-03-20-10_00
|
||||
2020-03-23-09_58
|
||||
2020-03-24-10_00
|
||||
2020-03-25-10_00
|
||||
2020-03-31-09_59
|
||||
2020-05-11-10_00
|
||||
2020-05-12-10_00
|
||||
2020-05-13-10_00
|
||||
2020-05-14-10_00
|
||||
2020-05-15-10_00
|
||||
2020-05-18-10_00
|
||||
2020-05-19-10_00
|
||||
2020-05-21-10_00
|
||||
2020-05-25-10_00
|
||||
2020-05-27-10_00
|
||||
2020-05-28-10_00
|
||||
2020-05-29-10_00
|
||||
2020-06-02-10_00
|
||||
2020-06-03-10_10
|
||||
2020-06-04-10_00
|
||||
2020-06-05-10_00
|
||||
2020-06-08-10_00
|
||||
2020-06-09-10_00
|
||||
2020-06-10-10_00
|
||||
2020-06-11-10_00
|
|
Loading…
Reference in New Issue
Block a user