This commit is contained in:
wendtalexander 2023-01-25 17:47:02 +01:00
commit d4ee13d56b
7 changed files with 660 additions and 177 deletions

View File

@ -1,18 +0,0 @@
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from tqdm import tqdm
from IPython import embed
from pandas import read_csv
from modules.logger import makeLogger
from modules.plotstyle import PlotStyle
from modules.datahandling import flatten
from modules.behaviour_handling import Behavior, correct_chasing_events, event_triggered_chirps
logger = makeLogger(__name__)
ps = PlotStyle()
#### Goal: CTC & PTC for each winner and loser and for all winners and loser ####

View File

@ -14,6 +14,7 @@ from modules.datahandling import causal_kde1d, acausal_kde1d, flatten
logger = makeLogger(__name__)
ps = PlotStyle()
class Behavior:
"""Load behavior data from csv file as class attributes
Attributes
@ -35,12 +36,17 @@ class Behavior:
def __init__(self, folder_path: str) -> None:
print(f'{folder_path}')
LED_on_time_BORIS = np.load(os.path.join(folder_path, 'LED_on_time.npy'), allow_pickle=True)
self.time = np.load(os.path.join(folder_path, "times.npy"), allow_pickle=True)
csv_filename = [f for f in os.listdir(folder_path) if f.endswith('.csv')][0] # check if there are more than one csv file
LED_on_time_BORIS = np.load(os.path.join(
folder_path, 'LED_on_time.npy'), allow_pickle=True)
self.time = np.load(os.path.join(
folder_path, "times.npy"), allow_pickle=True)
csv_filename = [f for f in os.listdir(folder_path) if f.endswith(
'.csv')][0] # check if there are more than one csv file
self.dataframe = read_csv(os.path.join(folder_path, csv_filename))
self.chirps = np.load(os.path.join(folder_path, 'chirps.npy'), allow_pickle=True)
self.chirps_ids = np.load(os.path.join(folder_path, 'chirp_ids.npy'), allow_pickle=True)
self.chirps = np.load(os.path.join(
folder_path, 'chirps.npy'), allow_pickle=True)
self.chirps_ids = np.load(os.path.join(
folder_path, 'chirp_ids.npy'), allow_pickle=True)
for k, key in enumerate(self.dataframe.keys()):
key = key.lower()
@ -49,7 +55,8 @@ class Behavior:
if '(' in key:
key = key.replace('(', '')
key = key.replace(')', '')
setattr(self, key, np.array(self.dataframe[self.dataframe.keys()[k]]))
setattr(self, key, np.array(
self.dataframe[self.dataframe.keys()[k]]))
last_LED_t_BORIS = LED_on_time_BORIS[-1]
real_time_range = self.time[-1] - self.time[0]
@ -58,6 +65,7 @@ class Behavior:
self.start_s = (self.start_s - shift) / factor
self.stop_s = (self.stop_s - shift) / factor
"""
1 - chasing onset
2 - chasing offset
@ -96,7 +104,8 @@ def correct_chasing_events(
offset_ids = np.arange(
len(category))[category == 1]
wrong_bh = np.arange(len(category))[category!=2][:-1][np.diff(category[category!=2])==0]
wrong_bh = np.arange(len(category))[
category != 2][:-1][np.diff(category[category != 2]) == 0]
if onset_ids[0] > offset_ids[0]:
offset_ids = np.delete(offset_ids, 0)
help_index = offset_ids[0]
@ -105,7 +114,6 @@ def correct_chasing_events(
category = np.delete(category, wrong_bh)
timestamps = np.delete(timestamps, wrong_bh)
# Check whether on- or offset is longer and calculate length difference
if len(onset_ids) > len(offset_ids):
len_diff = len(onset_ids) - len(offset_ids)
@ -129,7 +137,8 @@ def event_triggered_chirps(
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
event_chirps = [] # chirps that are in specified window around event
centered_chirps = [] # timestamps of chirps around event centered on the event timepoint
# timestamps of chirps around event centered on the event timepoint
centered_chirps = []
for event_timestamp in event:
start = event_timestamp - time_before_event
@ -148,15 +157,18 @@ def event_triggered_chirps(
centered_chirps = np.array([])
centered_chirps_convolved = np.zeros(len(time))
else:
centered_chirps = np.concatenate(centered_chirps, axis=0) # convert list of arrays to one array for plotting
centered_chirps_convolved = (acausal_kde1d(centered_chirps, time, width)) / len(event)
# convert list of arrays to one array for plotting
centered_chirps = np.concatenate(centered_chirps, axis=0)
centered_chirps_convolved = (acausal_kde1d(
centered_chirps, time, width)) / len(event)
return event_chirps, centered_chirps, centered_chirps_convolved
def main(datapath: str):
foldernames = [datapath + x + '/' for x in os.listdir(datapath) if os.path.isdir(datapath + x)]
foldernames = [
datapath + x + '/' for x in os.listdir(datapath) if os.path.isdir(datapath + x)]
nrecording_chirps = []
nrecording_chirps_fish_ids = []
@ -193,8 +205,6 @@ def main(datapath: str):
physical_contacts = timestamps[category == 2]
nrecording_physicals.append(physical_contacts)
# Define time window for chirps around event analysis
time_before_event = 30
time_after_event = 60
@ -222,14 +232,18 @@ def main(datapath: str):
physical_contacts = nrecording_physicals[i]
# Chirps around chasing onsets
_, centered_chasing_onset_chirps, cc_chasing_onset_chirps = event_triggered_chirps(chasing_onsets, chirps, time_before_event, time_after_event, dt, recording_width)
_, centered_chasing_onset_chirps, cc_chasing_onset_chirps = event_triggered_chirps(
chasing_onsets, chirps, time_before_event, time_after_event, dt, recording_width)
# Chirps around chasing offsets
_, centered_chasing_offset_chirps, cc_chasing_offset_chirps = event_triggered_chirps(chasing_offsets, chirps, time_before_event, time_after_event, dt, recording_width)
_, centered_chasing_offset_chirps, cc_chasing_offset_chirps = event_triggered_chirps(
chasing_offsets, chirps, time_before_event, time_after_event, dt, recording_width)
# Chirps around physical contacts
_, centered_physical_chirps, cc_physical_chirps = event_triggered_chirps(physical_contacts, chirps, time_before_event, time_after_event, dt, recording_width)
_, centered_physical_chirps, cc_physical_chirps = event_triggered_chirps(
physical_contacts, chirps, time_before_event, time_after_event, dt, recording_width)
nrecording_centered_onset_chirps.append(centered_chasing_onset_chirps)
nrecording_centered_offset_chirps.append(centered_chasing_offset_chirps)
nrecording_centered_offset_chirps.append(
centered_chasing_offset_chirps)
nrecording_centered_physical_chirps.append(centered_physical_chirps)
## Shuffled chirps ##
@ -252,7 +266,6 @@ def main(datapath: str):
# _, _, cc_shuffled_physical_chirps = event_triggered_chirps(physical_contacts, shuffled_chirps, time_before_event, time_after_event, dt, recording_width)
# nshuffled_physical_chirps.append(cc_shuffled_physical_chirps)
# rec_shuffled_q5_onset, rec_shuffled_median_onset, rec_shuffled_q95_onset = np.percentile(
# nshuffled_onset_chirps, (5, 50, 95), axis=0)
# rec_shuffled_q5_offset, rec_shuffled_median_offset, rec_shuffled_q95_offset = np.percentile(
@ -260,7 +273,6 @@ def main(datapath: str):
# rec_shuffled_q5_physical, rec_shuffled_median_physical, rec_shuffled_q95_physical = np.percentile(
# nshuffled_physical_chirps, (5, 50, 95), axis=0)
# #### Recording plots ####
# fig, ax = plt.subplots(1, 3, figsize=(28*ps.cm, 16*ps.cm, ), constrained_layout=True, sharey='all')
# ax[0].set_xlabel('Time[s]')
@ -319,9 +331,12 @@ def main(datapath: str):
# New bootstrapping approach
for n in range(nbootstrapping):
diff_onset = np.diff(np.sort(flatten(nrecording_centered_onset_chirps)))
diff_offset = np.diff(np.sort(flatten(nrecording_centered_offset_chirps)))
diff_physical = np.diff(np.sort(flatten(nrecording_centered_physical_chirps)))
diff_onset = np.diff(
np.sort(flatten(nrecording_centered_onset_chirps)))
diff_offset = np.diff(
np.sort(flatten(nrecording_centered_offset_chirps)))
diff_physical = np.diff(
np.sort(flatten(nrecording_centered_physical_chirps)))
np.random.shuffle(diff_onset)
shuffled_onset = np.cumsum(diff_onset)
@ -330,7 +345,7 @@ def main(datapath: str):
np.random.shuffle(diff_physical)
shuffled_physical = np.cumsum(diff_physical)
kde_onset = (acausal_kde1d(shuffled_onset, time, width))/(27*100)
kde_onset (acausal_kde1d(shuffled_onset, time, width))/(27*100)
kde_offset = (acausal_kde1d(shuffled_offset, time, width))/(27*100)
kde_physical = (acausal_kde1d(shuffled_physical, time, width))/(27*100)
@ -339,10 +354,12 @@ def main(datapath: str):
bootstrap_physical.append(kde_physical)
# New shuffle approach q5, q50, q95
onset_q5, onset_median, onset_q95 = np.percentile(bootstrap_onset, [5, 50, 95], axis=0)
offset_q5, offset_median, offset_q95 = np.percentile(bootstrap_offset, [5, 50, 95], axis=0)
physical_q5, physical_median, physical_q95 = np.percentile(bootstrap_physical, [5, 50, 95], axis=0)
onset_q5, onset_median, onset_q95 = np.percentile(
bootstrap_onset, [5, 50, 95], axis=0)
offset_q5, offset_median, offset_q95 = np.percentile(
bootstrap_offset, [5, 50, 95], axis=0)
physical_q5, physical_median, physical_q95 = np.percentile(
bootstrap_physical, [5, 50, 95], axis=0)
# vstack um 1. Dim zu cutten
# nrecording_shuffled_convolved_onset_chirps = np.vstack(nrecording_shuffled_convolved_onset_chirps)
@ -360,23 +377,33 @@ def main(datapath: str):
all_chirps = np.concatenate(nrecording_chirps).ravel() # not centered
# Flatten event timestamps
all_onsets = np.concatenate(nrecording_chasing_onsets).ravel() # not centered
all_offsets = np.concatenate(nrecording_chasing_offsets).ravel() # not centered
all_physicals = np.concatenate(nrecording_physicals).ravel() # not centered
all_onsets = np.concatenate(
nrecording_chasing_onsets).ravel() # not centered
all_offsets = np.concatenate(
nrecording_chasing_offsets).ravel() # not centered
all_physicals = np.concatenate(
nrecording_physicals).ravel() # not centered
# Flatten all chirps around events
all_onset_chirps = np.concatenate(nrecording_centered_onset_chirps).ravel() # centered
all_offset_chirps = np.concatenate(nrecording_centered_offset_chirps).ravel() # centered
all_physical_chirps = np.concatenate(nrecording_centered_physical_chirps).ravel() # centered
all_onset_chirps = np.concatenate(
nrecording_centered_onset_chirps).ravel() # centered
all_offset_chirps = np.concatenate(
nrecording_centered_offset_chirps).ravel() # centered
all_physical_chirps = np.concatenate(
nrecording_centered_physical_chirps).ravel() # centered
# Convolute all chirps
# Divide by total number of each event over all recordings
all_onset_chirps_convolved = (acausal_kde1d(all_onset_chirps, time, width)) / len(all_onsets)
all_offset_chirps_convolved = (acausal_kde1d(all_offset_chirps, time, width)) / len(all_offsets)
all_physical_chirps_convolved = (acausal_kde1d(all_physical_chirps, time, width)) / len(all_physicals)
all_onset_chirps_convolved = (acausal_kde1d(
all_onset_chirps, time, width)) / len(all_onsets)
all_offset_chirps_convolved = (acausal_kde1d(
all_offset_chirps, time, width)) / len(all_offsets)
all_physical_chirps_convolved = (acausal_kde1d(
all_physical_chirps, time, width)) / len(all_physicals)
# Plot all events with all shuffled
fig, ax = plt.subplots(1, 3, figsize=(28*ps.cm, 16*ps.cm, ), constrained_layout=True, sharey='all')
fig, ax = plt.subplots(1, 3, figsize=(
28*ps.cm, 16*ps.cm, ), constrained_layout=True, sharey='all')
# offsets = np.arange(1,28,1)
ax[0].set_xlabel('Time[s]')
@ -384,8 +411,10 @@ def main(datapath: str):
ax[0].set_ylabel('Chirp rate [Hz]')
ax[0].plot(time, all_onset_chirps_convolved, color=ps.yellow, zorder=2)
ax0 = ax[0].twinx()
nrecording_centered_onset_chirps = np.asarray(nrecording_centered_onset_chirps, dtype=object)
ax0.eventplot(np.array(nrecording_centered_onset_chirps), linelengths=0.5, colors=ps.gray, alpha=0.25, zorder=1)
nrecording_centered_onset_chirps = np.asarray(
nrecording_centered_onset_chirps, dtype=object)
ax0.eventplot(np.array(nrecording_centered_onset_chirps),
linelengths=0.5, colors=ps.gray, alpha=0.25, zorder=1)
ax0.vlines(0, 0, 1.5, ps.white, 'dashed')
ax[0].set_zorder(ax0.get_zorder()+1)
ax[0].patch.set_visible(False)
@ -400,8 +429,10 @@ def main(datapath: str):
ax[1].set_xlabel('Time[s]')
ax[1].plot(time, all_offset_chirps_convolved, color=ps.orange, zorder=2)
ax1 = ax[1].twinx()
nrecording_centered_offset_chirps = np.asarray(nrecording_centered_offset_chirps, dtype=object)
ax1.eventplot(np.array(nrecording_centered_offset_chirps), linelengths=0.5, colors=ps.gray, alpha=0.25, zorder=1)
nrecording_centered_offset_chirps = np.asarray(
nrecording_centered_offset_chirps, dtype=object)
ax1.eventplot(np.array(nrecording_centered_offset_chirps),
linelengths=0.5, colors=ps.gray, alpha=0.25, zorder=1)
ax1.vlines(0, 0, 1.5, ps.white, 'dashed')
ax[1].set_zorder(ax1.get_zorder()+1)
ax[1].patch.set_visible(False)
@ -416,8 +447,10 @@ def main(datapath: str):
ax[2].set_xlabel('Time[s]')
ax[2].plot(time, all_physical_chirps_convolved, color=ps.maroon, zorder=2)
ax2 = ax[2].twinx()
nrecording_centered_physical_chirps = np.asarray(nrecording_centered_physical_chirps, dtype=object)
ax2.eventplot(np.array(nrecording_centered_physical_chirps), linelengths=0.5, colors=ps.gray, alpha=0.25, zorder=1)
nrecording_centered_physical_chirps = np.asarray(
nrecording_centered_physical_chirps, dtype=object)
ax2.eventplot(np.array(nrecording_centered_physical_chirps),
linelengths=0.5, colors=ps.gray, alpha=0.25, zorder=1)
ax2.vlines(0, 0, 1.5, ps.white, 'dashed')
ax[2].set_zorder(ax2.get_zorder()+1)
ax[2].patch.set_visible(False)
@ -425,7 +458,8 @@ def main(datapath: str):
ax2.set_yticks([])
# ax[2].fill_between(time, shuffled_q5_physical, shuffled_q95_physical, color=ps.gray, alpha=0.5)
# ax[2].plot(time, shuffled_median_physical, ps.black)
ax[2].fill_between(time, physical_q5, physical_q95, color=ps.gray, alpha=0.5)
ax[2].fill_between(time, physical_q5, physical_q95,
color=ps.gray, alpha=0.5)
ax[2].plot(time, physical_median, ps.black)
fig.suptitle('All recordings')
plt.show()
@ -444,7 +478,6 @@ def main(datapath: str):
# plt.show()
# plt.close()
# # Associate chirps to individual fish
# fish1 = chirps[chirps_fish_ids == fish_ids[0]]
# fish2 = chirps[chirps_fish_ids == fish_ids[1]]
@ -453,7 +486,6 @@ def main(datapath: str):
# Convolution over all recordings
# Rasterplot for each recording
# #### Chirps around events, winner VS loser, one recording ####
# # Load file with fish ids and winner/loser info
# meta = pd.read_csv('../data/mount_data/order_meta.csv')
@ -547,7 +579,6 @@ def main(datapath: str):
# plt.show()
# plt.close()
# for i in range(len(fish_ids)):
# fish = fish_ids[i]
# chirps_temp = chirps[chirps_fish_ids == fish]
@ -556,7 +587,6 @@ def main(datapath: str):
#### Chirps around events, only losers, one recording ####
if __name__ == '__main__':
# Path to the data
datapath = '../data/mount_data/'

View File

@ -7,21 +7,12 @@ from IPython import embed
# check rec ../data/mount_data/2020-03-25-10_00/ starting at 3175
def main(datapaths):
for path in datapaths:
chirpdetection(path, plot='show')
if __name__ == '__main__':
dataroot = '../data/mount_data/'
def get_valid_datasets(dataroot):
datasets = sorted([name for name in os.listdir(dataroot) if os.path.isdir(
os.path.join(dataroot, name))])
valid_datasets = []
for dataset in datasets:
path = os.path.join(dataroot, dataset)
@ -43,9 +34,25 @@ if __name__ == '__main__':
datapaths = [os.path.join(dataroot, dataset) +
'/' for dataset in valid_datasets]
return datapaths, valid_datasets
def main(datapaths):
for path in datapaths:
chirpdetection(path, plot='show')
if __name__ == '__main__':
dataroot = '../data/mount_data/'
datapaths, valid_datasets= get_valid_datasets(dataroot)
recs = pd.DataFrame(columns=['recording'], data=valid_datasets)
recs.to_csv('../recs.csv', index=False)
datapaths = ['../data/mount_data/2020-03-25-10_00/']
# datapaths = ['../data/mount_data/2020-03-25-10_00/']
main(datapaths)
# window 1524 + 244 in dataset index 4 is nice example

View File

@ -1,14 +1,10 @@
import numpy as np
import os
import numpy as np
from IPython import embed
from pandas import read_csv
from modules.logger import makeLogger
from modules.datahandling import causal_kde1d, acausal_kde1d
from modules.datahandling import causal_kde1d, acausal_kde1d, flatten
logger = makeLogger(__name__)
@ -35,20 +31,33 @@ class Behavior:
def __init__(self, folder_path: str) -> None:
LED_on_time_BORIS = np.load(os.path.join(folder_path, 'LED_on_time.npy'), allow_pickle=True)
LED_on_time_BORIS = np.load(os.path.join(
folder_path, 'LED_on_time.npy'), allow_pickle=True)
csv_filename = [f for f in os.listdir(folder_path) if f.endswith('.csv')][0]
logger.info(f'CSV file: {csv_filename}')
self.dataframe = read_csv(os.path.join(folder_path, csv_filename))
csv_filename = os.path.split(folder_path[:-1])[-1]
csv_filename = '-'.join(csv_filename.split('-')[:-1]) + '.csv'
# embed()
self.chirps = np.load(os.path.join(folder_path, 'chirps.npy'), allow_pickle=True)
self.chirps_ids = np.load(os.path.join(folder_path, 'chirp_ids.npy'), allow_pickle=True)
# csv_filename = [f for f in os.listdir(
# folder_path) if f.endswith('.csv')][0]
# logger.info(f'CSV file: {csv_filename}')
self.dataframe = read_csv(os.path.join(folder_path, csv_filename))
self.ident = np.load(os.path.join(folder_path, 'ident_v.npy'), allow_pickle=True)
self.idx = np.load(os.path.join(folder_path, 'idx_v.npy'), allow_pickle=True)
self.freq = np.load(os.path.join(folder_path, 'fund_v.npy'), allow_pickle=True)
self.time = np.load(os.path.join(folder_path, "times.npy"), allow_pickle=True)
self.spec = np.load(os.path.join(folder_path, "spec.npy"), allow_pickle=True)
self.chirps = np.load(os.path.join(
folder_path, 'chirps.npy'), allow_pickle=True)
self.chirps_ids = np.load(os.path.join(
folder_path, 'chirp_ids.npy'), allow_pickle=True)
self.ident = np.load(os.path.join(
folder_path, 'ident_v.npy'), allow_pickle=True)
self.idx = np.load(os.path.join(
folder_path, 'idx_v.npy'), allow_pickle=True)
self.freq = np.load(os.path.join(
folder_path, 'fund_v.npy'), allow_pickle=True)
self.time = np.load(os.path.join(
folder_path, "times.npy"), allow_pickle=True)
self.spec = np.load(os.path.join(
folder_path, "spec.npy"), allow_pickle=True)
for k, key in enumerate(self.dataframe.keys()):
key = key.lower()
@ -57,7 +66,8 @@ class Behavior:
if '(' in key:
key = key.replace('(', '')
key = key.replace(')', '')
setattr(self, key, np.array(self.dataframe[self.dataframe.keys()[k]]))
setattr(self, key, np.array(
self.dataframe[self.dataframe.keys()[k]]))
last_LED_t_BORIS = LED_on_time_BORIS[-1]
real_time_range = self.time[-1] - self.time[0]
@ -77,7 +87,14 @@ def correct_chasing_events(
offset_ids = np.arange(
len(category))[category == 1]
wrong_bh = np.arange(len(category))[category!=2][:-1][np.diff(category[category!=2])==0]
wrong_bh = np.arange(len(category))[
category != 2][:-1][np.diff(category[category != 2]) == 0]
if category[category != 2][-1] == 0:
wrong_bh = np.append(
wrong_bh,
np.arange(len(category))[category != 2][-1])
if onset_ids[0] > offset_ids[0]:
offset_ids = np.delete(offset_ids, 0)
help_index = offset_ids[0]
@ -92,49 +109,61 @@ def correct_chasing_events(
len(category))[category == 1]
# Check whether on- or offset is longer and calculate length difference
if len(new_onset_ids) > len(new_offset_ids):
len_diff = len(onset_ids) - len(offset_ids)
logger.info(f'Onsets are greater than offsets by {len_diff}')
embed()
logger.warning('Onsets are greater than offsets')
elif len(new_onset_ids) < len(new_offset_ids):
len_diff = len(offset_ids) - len(onset_ids)
logger.info(f'Offsets are greater than onsets by {len_diff}')
logger.warning('Offsets are greater than onsets')
elif len(new_onset_ids) == len(new_offset_ids):
logger.info('Chasing events are equal')
# logger.info('Chasing events are equal')
pass
return category, timestamps
def event_triggered_chirps(
event: np.ndarray,
def center_chirps(
events: np.ndarray,
chirps: np.ndarray,
time_before_event: int,
time_after_event: int,
dt: float,
width: float,
# dt: float,
# width: float,
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
event_chirps = [] # chirps that are in specified window around event
centered_chirps = [] # timestamps of chirps around event centered on the event timepoint
# timestamps of chirps around event centered on the event timepoint
centered_chirps = []
for event_timestamp in events:
for event_timestamp in event:
start = event_timestamp - time_before_event
stop = event_timestamp + time_after_event
chirps_around_event = [c for c in chirps if (c >= start) & (c <= stop)]
event_chirps.append(chirps_around_event)
if len(chirps_around_event) == 0:
continue
else:
centered_chirps.append(chirps_around_event - event_timestamp)
event_chirps.append(chirps_around_event)
centered_chirps = np.sort(flatten(centered_chirps))
event_chirps = np.sort(flatten(event_chirps))
time = np.arange(-time_before_event, time_after_event, dt)
if len(centered_chirps) != len(event_chirps):
raise ValueError(
'Non centered chirps and centered chirps are not equal')
# Kernel density estimation with some if's
if len(centered_chirps) == 0:
centered_chirps = np.array([])
centered_chirps_convolved = np.zeros(len(time))
else:
centered_chirps = np.concatenate(centered_chirps, axis=0) # convert list of arrays to one array for plotting
centered_chirps_convolved = (acausal_kde1d(centered_chirps, time, width)) / len(event)
# time = np.arange(-time_before_event, time_after_event, dt)
return event_chirps, centered_chirps, centered_chirps_convolved
# # Kernel density estimation with some if's
# if len(centered_chirps) == 0:
# centered_chirps = np.array([])
# centered_chirps_convolved = np.zeros(len(time))
# else:
# # convert list of arrays to one array for plotting
# centered_chirps = np.concatenate(centered_chirps, axis=0)
# centered_chirps_convolved = (acausal_kde1d(
# centered_chirps, time, width)) / len(event)
return centered_chirps

432
code/plot_kdes.py Normal file
View File

@ -0,0 +1,432 @@
from extract_chirps import get_valid_datasets
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from tqdm import tqdm
from IPython import embed
from pandas import read_csv
from modules.logger import makeLogger
from modules.datahandling import flatten, causal_kde1d, acausal_kde1d
from modules.behaviour_handling import (
Behavior, correct_chasing_events, center_chirps)
from modules.plotstyle import PlotStyle
logger = makeLogger(__name__)
ps = PlotStyle()
def jackknife(data, nresamples, subsetsize, kde_time, kernel_width):
if len(data) == 0:
return []
jackknifed_kdes = []
data = np.sort(data)
subsetsize = int(np.round(len(data)*subsetsize))
for n in range(nresamples):
subset = np.random.choice(data, subsetsize, replace=False)
subset_kde = acausal_kde1d(subset, time=kde_time, width=kernel_width)
jackknifed_kdes.append(subset_kde)
return jackknifed_kdes
def bootstrap(data, nresamples, kde_time, kernel_width, event_times, time_before, time_after):
bootstrapped_kdes = []
data = data[data <= 3*60*60] # only night time
if len(data) == 0:
logger.info('No data for bootstrap, added zeros')
return [np.zeros_like(kde_time) for i in range(nresamples)]
diff_data = np.diff(np.sort(data), prepend=np.sort(data)[0])
for i in tqdm(range(nresamples)):
np.random.shuffle(diff_data)
bootstrapped_data = np.cumsum(diff_data)
bootstrap_data_centered = center_chirps(
bootstrapped_data, event_times, time_before, time_after)
bootstrapped_kde = acausal_kde1d(
bootstrap_data_centered, time=kde_time, width=kernel_width)
bootstrapped_kdes.append(bootstrapped_kde)
return bootstrapped_kdes
def get_chirp_winner_loser(folder_name, Behavior, order_meta_df):
foldername = folder_name.split('/')[-2]
winner_row = order_meta_df[order_meta_df['recording'] == foldername]
winner = winner_row['winner'].values[0].astype(int)
winner_fish1 = winner_row['fish1'].values[0].astype(int)
winner_fish2 = winner_row['fish2'].values[0].astype(int)
if winner > 0:
if winner == winner_fish1:
winner_fish_id = winner_row['rec_id1'].values[0]
loser_fish_id = winner_row['rec_id2'].values[0]
elif winner == winner_fish2:
winner_fish_id = winner_row['rec_id2'].values[0]
loser_fish_id = winner_row['rec_id1'].values[0]
chirp_winner = Behavior.chirps[Behavior.chirps_ids == winner_fish_id]
chirp_loser = Behavior.chirps[Behavior.chirps_ids == loser_fish_id]
return chirp_winner, chirp_loser
return None, None
def main(dataroot):
foldernames, _ = get_valid_datasets(dataroot)
plot_all = False
time_before = 60
time_after = 60
dt = 0.001
kernel_width = 1
kde_time = np.arange(-time_before, time_after, dt)
nbootstraps = 2
meta_path = (
'/').join(foldernames[0].split('/')[:-2]) + '/order_meta.csv'
meta = pd.read_csv(meta_path)
meta['recording'] = meta['recording'].str[1:-1]
winner_onsets = []
winner_offsets = []
winner_physicals = []
loser_onsets = []
loser_offsets = []
loser_physicals = []
winner_onsets_boot = []
winner_offsets_boot = []
winner_physicals_boot = []
loser_onsets_boot = []
loser_offsets_boot = []
loser_physicals_boot = []
onset_count = 0
offset_count = 0
physical_count = 0
# Iterate over all recordings and save chirp- and event-timestamps
for folder in tqdm(foldernames):
foldername = folder.split('/')[-2]
# logger.info('Loading data from folder: {}'.format(foldername))
broken_folders = ['../data/mount_data/2020-05-12-10_00/']
if folder in broken_folders:
continue
bh = Behavior(folder)
category, timestamps = correct_chasing_events(bh.behavior, bh.start_s)
winner, loser = get_chirp_winner_loser(folder, bh, meta)
if winner is None:
continue
onsets = (timestamps[category == 0])
offsets = (timestamps[category == 1])
physicals = (timestamps[category == 2])
onset_count += len(onsets)
offset_count += len(offsets)
physical_count += len(physicals)
winner_onsets.append(center_chirps(
winner, onsets, time_before, time_after))
winner_offsets.append(center_chirps(
winner, offsets, time_before, time_after))
winner_physicals.append(center_chirps(
winner, physicals, time_before, time_after))
loser_onsets.append(center_chirps(
loser, onsets, time_before, time_after))
loser_offsets.append(center_chirps(
loser, offsets, time_before, time_after))
loser_physicals.append(center_chirps(
loser, physicals, time_before, time_after))
# bootstrap
winner_onsets_boot.append(bootstrap(
winner,
nresamples=nbootstraps,
kde_time=kde_time,
kernel_width=kernel_width,
event_times=onsets,
time_before=time_before,
time_after=time_after))
winner_offsets_boot.append(bootstrap(
winner,
nresamples=nbootstraps,
kde_time=kde_time,
kernel_width=kernel_width,
event_times=offsets,
time_before=time_before,
time_after=time_after))
winner_physicals_boot.append(bootstrap(
winner,
nresamples=nbootstraps,
kde_time=kde_time,
kernel_width=kernel_width,
event_times=physicals,
time_before=time_before,
time_after=time_after))
loser_onsets_boot.append(bootstrap(
loser,
nresamples=nbootstraps,
kde_time=kde_time,
kernel_width=kernel_width,
event_times=onsets,
time_before=time_before,
time_after=time_after))
loser_offsets_boot.append(bootstrap(
loser,
nresamples=nbootstraps,
kde_time=kde_time,
kernel_width=kernel_width,
event_times=offsets,
time_before=time_before,
time_after=time_after))
loser_physicals_boot.append(bootstrap(
loser,
nresamples=nbootstraps,
kde_time=kde_time,
kernel_width=kernel_width,
event_times=physicals,
time_before=time_before,
time_after=time_after))
if plot_all:
winner_onsets_conv = acausal_kde1d(
winner_onsets[-1], kde_time, kernel_width)
winner_offsets_conv = acausal_kde1d(
winner_offsets[-1], kde_time, kernel_width)
winner_physicals_conv = acausal_kde1d(
winner_physicals[-1], kde_time, kernel_width)
loser_onsets_conv = acausal_kde1d(
loser_onsets[-1], kde_time, kernel_width)
loser_offsets_conv = acausal_kde1d(
loser_offsets[-1], kde_time, kernel_width)
loser_physicals_conv = acausal_kde1d(
loser_physicals[-1], kde_time, kernel_width)
fig, ax = plt.subplots(2, 3, figsize=(
21*ps.cm, 10*ps.cm), sharey=True, sharex=True)
ax[0, 0].set_title(
f"{foldername}, onsets {len(onsets)}, offsets {len(offsets)}, physicals {len(physicals)},winner {len(winner)}, looser {len(loser)} , onsets")
ax[0, 0].plot(kde_time, winner_onsets_conv/len(onsets))
ax[0, 1].plot(kde_time, winner_offsets_conv/len(offsets))
ax[0, 2].plot(kde_time, winner_physicals_conv/len(physicals))
ax[1, 0].plot(kde_time, loser_onsets_conv/len(onsets))
ax[1, 1].plot(kde_time, loser_offsets_conv/len(offsets))
ax[1, 2].plot(kde_time, loser_physicals_conv/len(physicals))
# # plot bootstrap lines
# for kde in winner_onsets_boot[-1]:
# ax[0, 0].plot(kde_time, kde/len(offsets),
# color='gray')
# for kde in winner_offsets_boot[-1]:
# ax[0, 1].plot(kde_time, kde/len(offsets),
# color='gray')
# for kde in winner_physicals_boot[-1]:
# ax[0, 2].plot(kde_time, kde/len(offsets),
# color='gray')
# for kde in loser_onsets_boot[-1]:
# ax[1, 0].plot(kde_time, kde/len(offsets),
# color='gray')
# for kde in loser_offsets_boot[-1]:
# ax[1, 1].plot(kde_time, kde/len(offsets),
# color='gray')
# for kde in loser_physicals_boot[-1]:
# ax[1, 2].plot(kde_time, kde/len(offsets),
# color='gray')
# plot bootstrap percentiles
ax[0, 0].fill_between(
kde_time,
np.percentile(winner_onsets_boot[-1], 5, axis=0)/len(onsets),
np.percentile(winner_onsets_boot[-1], 95, axis=0)/len(onsets),
color='gray',
alpha=0.5)
ax[0, 1].fill_between(
kde_time,
np.percentile(winner_offsets_boot[-1], 5, axis=0)/len(offsets),
np.percentile(
winner_offsets_boot[-1], 95, axis=0)/len(offsets),
color='gray',
alpha=0.5)
ax[0, 2].fill_between(
kde_time,
np.percentile(
winner_physicals_boot[-1], 5, axis=0)/len(physicals),
np.percentile(
winner_physicals_boot[-1], 95, axis=0)/len(physicals),
color='gray',
alpha=0.5)
ax[1, 0].fill_between(
kde_time,
np.percentile(loser_onsets_boot[-1], 5, axis=0)/len(onsets),
np.percentile(loser_onsets_boot[-1], 95, axis=0)/len(onsets),
color='gray',
alpha=0.5)
ax[1, 1].fill_between(
kde_time,
np.percentile(loser_offsets_boot[-1], 5, axis=0)/len(offsets),
np.percentile(loser_offsets_boot[-1], 95, axis=0)/len(offsets),
color='gray',
alpha=0.5)
ax[1, 2].fill_between(
kde_time,
np.percentile(
loser_physicals_boot[-1], 5, axis=0)/len(physicals),
np.percentile(
loser_physicals_boot[-1], 95, axis=0)/len(physicals),
color='gray',
alpha=0.5)
ax[0, 0].plot(kde_time, np.median(winner_onsets_boot[-1], axis=0)/len(onsets),
color='black', linewidth=2)
ax[0, 1].plot(kde_time, np.median(winner_offsets_boot[-1], axis=0)/len(offsets),
color='black', linewidth=2)
ax[0, 2].plot(kde_time, np.median(winner_physicals_boot[-1], axis=0)/len(physicals),
color='black', linewidth=2)
ax[1, 0].plot(kde_time, np.median(loser_onsets_boot[-1], axis=0)/len(onsets),
color='black', linewidth=2)
ax[1, 1].plot(kde_time, np.median(loser_offsets_boot[-1], axis=0)/len(offsets),
color='black', linewidth=2)
ax[1, 2].plot(kde_time, np.median(loser_physicals_boot[-1], axis=0)/len(physicals),
color='black', linewidth=2)
ax[0, 0].set_xlim(-30, 30)
plt.show()
winner_onsets = np.sort(flatten(winner_onsets))
winner_offsets = np.sort(flatten(winner_offsets))
winner_physicals = np.sort(flatten(winner_physicals))
loser_onsets = np.sort(flatten(loser_onsets))
loser_offsets = np.sort(flatten(loser_offsets))
loser_physicals = np.sort(flatten(loser_physicals))
winner_onsets_conv = acausal_kde1d(
winner_onsets, kde_time, kernel_width)
winner_offsets_conv = acausal_kde1d(
winner_offsets, kde_time, kernel_width)
winner_physicals_conv = acausal_kde1d(
winner_physicals, kde_time, kernel_width)
loser_onsets_conv = acausal_kde1d(
loser_onsets, kde_time, kernel_width)
loser_offsets_conv = acausal_kde1d(
loser_offsets, kde_time, kernel_width)
loser_physicals_conv = acausal_kde1d(
loser_physicals, kde_time, kernel_width)
winner_onsets_conv = winner_onsets_conv / onset_count
winner_offsets_conv = winner_offsets_conv / offset_count
winner_physicals_conv = winner_physicals_conv / physical_count
loser_onsets_conv = loser_onsets_conv / onset_count
loser_offsets_conv = loser_offsets_conv / offset_count
loser_physicals_conv = loser_physicals_conv / physical_count
embed()
winner_onsets_boot = np.concatenate(
winner_onsets_boot) / onset_count
winner_offsets_boot = np.concatenate(
winner_offsets_boot) / offset_count
winner_physicals_boot = np.concatenate(
winner_physicals_boot) / physical_count
loser_onsets_boot = np.concatenate(
loser_onsets_boot) / onset_count
loser_offsets_boot = np.concatenate(
loser_offsets_boot) / offset_count
loser_physicals_boot = np.concatenate(
loser_physicals_boot) / physical_count
percs = [5, 50, 95]
winner_onsets_boot_quarts = np.percentile(
winner_onsets_boot, percs, axis=0)
winner_offsets_boot_quarts = np.percentile(
winner_offsets_boot, percs, axis=0)
winner_physicals_boot_quarts = np.percentile(
winner_physicals_boot, percs, axis=0)
loser_onsets_boot_quarts = np.percentile(
loser_onsets_boot, percs, axis=0)
loser_offsets_boot_quarts = np.percentile(
loser_offsets_boot, percs, axis=0)
loser_physicals_boot_quarts = np.percentile(
loser_physicals_boot, percs, axis=0)
fig, ax = plt.subplots(2, 3, figsize=(
21*ps.cm, 10*ps.cm), sharey=True, sharex=True)
ax[0, 0].plot(kde_time, winner_onsets_conv)
ax[0, 0].fill_between(kde_time,
winner_onsets_boot_quarts[0],
winner_onsets_boot_quarts[2],
color=ps.gray,
alpha=0.5)
ax[0, 0].plot(kde_time, winner_onsets_boot_quarts[1], c=ps.black)
ax[0, 1].plot(kde_time, winner_offsets_conv)
ax[0, 1].fill_between(kde_time,
winner_offsets_boot_quarts[0],
winner_offsets_boot_quarts[2],
color=ps.gray,
alpha=0.5)
ax[0, 1].plot(kde_time, winner_offsets_boot_quarts[1], c=ps.black)
ax[0, 2].plot(kde_time, winner_physicals_conv)
ax[0, 2].fill_between(kde_time,
loser_physicals_boot_quarts[0],
loser_physicals_boot_quarts[2],
color=ps.gray,
alpha=0.5)
ax[0, 2].plot(kde_time, winner_physicals_boot_quarts[1], c=ps.black)
ax[1, 0].plot(kde_time, loser_onsets_conv)
ax[1, 0].fill_between(kde_time,
loser_onsets_boot_quarts[0],
loser_onsets_boot_quarts[2],
color=ps.gray,
alpha=0.5)
ax[1, 0].plot(kde_time, loser_onsets_boot_quarts[1], c=ps.black)
ax[1, 1].plot(kde_time, loser_offsets_conv)
ax[1, 1].fill_between(kde_time,
loser_offsets_boot_quarts[0],
loser_offsets_boot_quarts[2],
color=ps.gray,
alpha=0.5)
ax[1, 1].plot(kde_time, loser_offsets_boot_quarts[1], c=ps.black)
ax[1, 2].plot(kde_time, loser_physicals_conv)
ax[1, 2].fill_between(kde_time,
loser_physicals_boot_quarts[0],
loser_physicals_boot_quarts[2],
color=ps.gray,
alpha=0.5)
ax[1, 2].plot(kde_time, loser_physicals_boot_quarts[1], c=ps.black)
plt.show()
if __name__ == '__main__':
main('../data/mount_data/')

Binary file not shown.

View File

@ -23,7 +23,10 @@ blockverticalspace=2mm, colspace=20mm, subcolspace=0mm]{tikzposter} %Default val
with single - or physically separated - individuals.
\begin{tikzfigure}[]
\label{griddrawing}
<<<<<<< HEAD
=======
\includegraphics[width=0.8\linewidth]{figs/introplot}
>>>>>>> cdcf9564df07914cf57225de5a8bdaa642fbad0e
\end{tikzfigure}
}
\myblock[TranspBlock]{Chirp detection}{