export functions in modules, plot chirp
This commit is contained in:
parent
2a32a29d4e
commit
ce560bf939
99
code/modules/behaviour_handling.py
Normal file
99
code/modules/behaviour_handling.py
Normal file
@ -0,0 +1,99 @@
|
||||
import numpy as np
|
||||
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
from IPython import embed
|
||||
|
||||
|
||||
from pandas import read_csv
|
||||
from modules.logger import makeLogger
|
||||
|
||||
|
||||
logger = makeLogger(__name__)
|
||||
|
||||
|
||||
class Behavior:
|
||||
"""Load behavior data from csv file as class attributes
|
||||
Attributes
|
||||
----------
|
||||
behavior: 0: chasing onset, 1: chasing offset, 2: physical contact
|
||||
behavior_type:
|
||||
behavioral_category:
|
||||
comment_start:
|
||||
comment_stop:
|
||||
dataframe: pandas dataframe with all the data
|
||||
duration_s:
|
||||
media_file:
|
||||
observation_date:
|
||||
observation_id:
|
||||
start_s: start time of the event in seconds
|
||||
stop_s: stop time of the event in seconds
|
||||
total_length:
|
||||
"""
|
||||
|
||||
def __init__(self, folder_path: str) -> None:
|
||||
|
||||
LED_on_time_BORIS = np.load(os.path.join(folder_path, 'LED_on_time.npy'), allow_pickle=True)
|
||||
|
||||
csv_filename = [f for f in os.listdir(folder_path) if f.endswith('.csv')][0]
|
||||
logger.info(f'CSV file: {csv_filename}')
|
||||
self.dataframe = read_csv(os.path.join(folder_path, csv_filename))
|
||||
|
||||
self.chirps = np.load(os.path.join(folder_path, 'chirps.npy'), allow_pickle=True)
|
||||
self.chirps_ids = np.load(os.path.join(folder_path, 'chirp_ids.npy'), allow_pickle=True)
|
||||
|
||||
self.ident = np.load(os.path.join(folder_path, 'ident_v.npy'), allow_pickle=True)
|
||||
self.idx = np.load(os.path.join(folder_path, 'idx_v.npy'), allow_pickle=True)
|
||||
self.freq = np.load(os.path.join(folder_path, 'fund_v.npy'), allow_pickle=True)
|
||||
self.time = np.load(os.path.join(folder_path, "times.npy"), allow_pickle=True)
|
||||
self.spec = np.load(os.path.join(folder_path, "spec.npy"), allow_pickle=True)
|
||||
|
||||
for k, key in enumerate(self.dataframe.keys()):
|
||||
key = key.lower()
|
||||
if ' ' in key:
|
||||
key = key.replace(' ', '_')
|
||||
if '(' in key:
|
||||
key = key.replace('(', '')
|
||||
key = key.replace(')', '')
|
||||
setattr(self, key, np.array(self.dataframe[self.dataframe.keys()[k]]))
|
||||
|
||||
last_LED_t_BORIS = LED_on_time_BORIS[-1]
|
||||
real_time_range = self.time[-1] - self.time[0]
|
||||
factor = 1.034141
|
||||
shift = last_LED_t_BORIS - real_time_range * factor
|
||||
self.start_s = (self.start_s - shift) / factor
|
||||
self.stop_s = (self.stop_s - shift) / factor
|
||||
|
||||
|
||||
def correct_chasing_events(
|
||||
category: np.ndarray,
|
||||
timestamps: np.ndarray
|
||||
) -> tuple[np.ndarray, np.ndarray]:
|
||||
|
||||
onset_ids = np.arange(
|
||||
len(category))[category == 0]
|
||||
offset_ids = np.arange(
|
||||
len(category))[category == 1]
|
||||
|
||||
woring_bh = np.arange(len(category))[category!=2][:-1][np.diff(category[category!=2])==0]
|
||||
if onset_ids[0] > offset_ids[0]:
|
||||
offset_ids = np.delete(offset_ids, 0)
|
||||
help_index = offset_ids[0]
|
||||
woring_bh = np.append(woring_bh, help_index)
|
||||
|
||||
category = np.delete(category, woring_bh)
|
||||
timestamps = np.delete(timestamps, woring_bh)
|
||||
|
||||
# Check whether on- or offset is longer and calculate length difference
|
||||
if len(onset_ids) > len(offset_ids):
|
||||
len_diff = len(onset_ids) - len(offset_ids)
|
||||
logger.info(f'Onsets are greater than offsets by {len_diff}')
|
||||
elif len(onset_ids) < len(offset_ids):
|
||||
len_diff = len(offset_ids) - len(onset_ids)
|
||||
logger.info(f'Offsets are greater than onsets by {len_diff}')
|
||||
elif len(onset_ids) == len(offset_ids):
|
||||
logger.info('Chasing events are equal')
|
||||
|
||||
|
||||
return category, timestamps
|
@ -10,100 +10,13 @@ from IPython import embed
|
||||
from pandas import read_csv
|
||||
from modules.logger import makeLogger
|
||||
from modules.plotstyle import PlotStyle
|
||||
from modules.behaviour_handling import Behavior, correct_chasing_events
|
||||
|
||||
ps = PlotStyle()
|
||||
|
||||
logger = makeLogger(__name__)
|
||||
|
||||
|
||||
class Behavior:
|
||||
"""Load behavior data from csv file as class attributes
|
||||
Attributes
|
||||
----------
|
||||
behavior: 0: chasing onset, 1: chasing offset, 2: physical contact
|
||||
behavior_type:
|
||||
behavioral_category:
|
||||
comment_start:
|
||||
comment_stop:
|
||||
dataframe: pandas dataframe with all the data
|
||||
duration_s:
|
||||
media_file:
|
||||
observation_date:
|
||||
observation_id:
|
||||
start_s: start time of the event in seconds
|
||||
stop_s: stop time of the event in seconds
|
||||
total_length:
|
||||
"""
|
||||
|
||||
def __init__(self, folder_path: str) -> None:
|
||||
LED_on_time_BORIS = np.load(os.path.join(folder_path, 'LED_on_time.npy'), allow_pickle=True)
|
||||
|
||||
csv_filename = [f for f in os.listdir(folder_path) if f.endswith('.csv')][0]
|
||||
logger.info(f'CSV file: {csv_filename}')
|
||||
self.dataframe = read_csv(os.path.join(folder_path, csv_filename))
|
||||
|
||||
self.chirps = np.load(os.path.join(folder_path, 'chirps.npy'), allow_pickle=True)
|
||||
self.chirps_ids = np.load(os.path.join(folder_path, 'chirp_ids.npy'), allow_pickle=True)
|
||||
|
||||
self.ident = np.load(os.path.join(folder_path, 'ident_v.npy'), allow_pickle=True)
|
||||
self.idx = np.load(os.path.join(folder_path, 'idx_v.npy'), allow_pickle=True)
|
||||
self.freq = np.load(os.path.join(folder_path, 'fund_v.npy'), allow_pickle=True)
|
||||
self.time = np.load(os.path.join(folder_path, "times.npy"), allow_pickle=True)
|
||||
self.spec = np.load(os.path.join(folder_path, "spec.npy"), allow_pickle=True)
|
||||
|
||||
for k, key in enumerate(self.dataframe.keys()):
|
||||
key = key.lower()
|
||||
if ' ' in key:
|
||||
key = key.replace(' ', '_')
|
||||
if '(' in key:
|
||||
key = key.replace('(', '')
|
||||
key = key.replace(')', '')
|
||||
setattr(self, key, np.array(self.dataframe[self.dataframe.keys()[k]]))
|
||||
|
||||
last_LED_t_BORIS = LED_on_time_BORIS[-1]
|
||||
real_time_range = self.time[-1] - self.time[0]
|
||||
factor = 1.034141
|
||||
shift = last_LED_t_BORIS - real_time_range * factor
|
||||
self.start_s = (self.start_s - shift) / factor
|
||||
self.stop_s = (self.stop_s - shift) / factor
|
||||
|
||||
|
||||
|
||||
|
||||
def correct_chasing_events(
|
||||
category: np.ndarray,
|
||||
timestamps: np.ndarray
|
||||
) -> tuple[np.ndarray, np.ndarray]:
|
||||
|
||||
onset_ids = np.arange(
|
||||
len(category))[category == 0]
|
||||
offset_ids = np.arange(
|
||||
len(category))[category == 1]
|
||||
|
||||
woring_bh = np.arange(len(category))[category!=2][:-1][np.diff(category[category!=2])==0]
|
||||
if onset_ids[0] > offset_ids[0]:
|
||||
offset_ids = np.delete(offset_ids, 0)
|
||||
help_index = offset_ids[0]
|
||||
woring_bh = np.append(woring_bh, help_index)
|
||||
|
||||
category = np.delete(category, woring_bh)
|
||||
timestamps = np.delete(timestamps, woring_bh)
|
||||
|
||||
# Check whether on- or offset is longer and calculate length difference
|
||||
if len(onset_ids) > len(offset_ids):
|
||||
len_diff = len(onset_ids) - len(offset_ids)
|
||||
logger.info(f'Onsets are greater than offsets by {len_diff}')
|
||||
elif len(onset_ids) < len(offset_ids):
|
||||
len_diff = len(offset_ids) - len(onset_ids)
|
||||
logger.info(f'Offsets are greater than onsets by {len_diff}')
|
||||
elif len(onset_ids) == len(offset_ids):
|
||||
logger.info('Chasing events are equal')
|
||||
|
||||
|
||||
return category, timestamps
|
||||
|
||||
|
||||
|
||||
def main(datapath: str):
|
||||
|
||||
foldernames = [datapath + x + '/' for x in os.listdir(datapath) if os.path.isdir(datapath+x)]
|
||||
|
@ -10,188 +10,96 @@ from IPython import embed
|
||||
from pandas import read_csv
|
||||
from modules.logger import makeLogger
|
||||
from modules.plotstyle import PlotStyle
|
||||
from modules.behaviour_handling import Behavior, correct_chasing_events
|
||||
|
||||
ps = PlotStyle()
|
||||
|
||||
logger = makeLogger(__name__)
|
||||
|
||||
|
||||
class Behavior:
|
||||
"""Load behavior data from csv file as class attributes
|
||||
Attributes
|
||||
----------
|
||||
behavior: 0: chasing onset, 1: chasing offset, 2: physical contact
|
||||
behavior_type:
|
||||
behavioral_category:
|
||||
comment_start:
|
||||
comment_stop:
|
||||
dataframe: pandas dataframe with all the data
|
||||
duration_s:
|
||||
media_file:
|
||||
observation_date:
|
||||
observation_id:
|
||||
start_s: start time of the event in seconds
|
||||
stop_s: stop time of the event in seconds
|
||||
total_length:
|
||||
"""
|
||||
|
||||
def __init__(self, folder_path: str) -> None:
|
||||
|
||||
|
||||
LED_on_time_BORIS = np.load(os.path.join(folder_path, 'LED_on_time.npy'), allow_pickle=True)
|
||||
|
||||
csv_filename = [f for f in os.listdir(folder_path) if f.endswith('.csv')][0]
|
||||
logger.info(f'CSV file: {csv_filename}')
|
||||
self.dataframe = read_csv(os.path.join(folder_path, csv_filename))
|
||||
|
||||
self.chirps = np.load(os.path.join(folder_path, 'chirps.npy'), allow_pickle=True)
|
||||
self.chirps_ids = np.load(os.path.join(folder_path, 'chirps_ids.npy'), allow_pickle=True)
|
||||
|
||||
self.ident = np.load(os.path.join(folder_path, 'ident_v.npy'), allow_pickle=True)
|
||||
self.idx = np.load(os.path.join(folder_path, 'idx_v.npy'), allow_pickle=True)
|
||||
self.freq = np.load(os.path.join(folder_path, 'fund_v.npy'), allow_pickle=True)
|
||||
self.time = np.load(os.path.join(folder_path, "times.npy"), allow_pickle=True)
|
||||
self.spec = np.load(os.path.join(folder_path, "spec.npy"), allow_pickle=True)
|
||||
|
||||
for k, key in enumerate(self.dataframe.keys()):
|
||||
key = key.lower()
|
||||
if ' ' in key:
|
||||
key = key.replace(' ', '_')
|
||||
if '(' in key:
|
||||
key = key.replace('(', '')
|
||||
key = key.replace(')', '')
|
||||
setattr(self, key, np.array(self.dataframe[self.dataframe.keys()[k]]))
|
||||
|
||||
last_LED_t_BORIS = LED_on_time_BORIS[-1]
|
||||
real_time_range = self.time[-1] - self.time[0]
|
||||
factor = 1.034141
|
||||
shift = last_LED_t_BORIS - real_time_range * factor
|
||||
self.start_s = (self.start_s - shift) / factor
|
||||
self.stop_s = (self.stop_s - shift) / factor
|
||||
|
||||
def correct_chasing_events(
|
||||
category: np.ndarray,
|
||||
timestamps: np.ndarray
|
||||
) -> tuple[np.ndarray, np.ndarray]:
|
||||
|
||||
onset_ids = np.arange(
|
||||
len(category))[category == 0]
|
||||
offset_ids = np.arange(
|
||||
len(category))[category == 1]
|
||||
|
||||
# Check whether on- or offset is longer and calculate length difference
|
||||
if len(onset_ids) > len(offset_ids):
|
||||
len_diff = len(onset_ids) - len(offset_ids)
|
||||
longer_array = onset_ids
|
||||
shorter_array = offset_ids
|
||||
logger.info(f'Onsets are greater than offsets by {len_diff}')
|
||||
elif len(onset_ids) < len(offset_ids):
|
||||
len_diff = len(offset_ids) - len(onset_ids)
|
||||
longer_array = offset_ids
|
||||
shorter_array = onset_ids
|
||||
logger.info(f'Offsets are greater than offsets by {len_diff}')
|
||||
elif len(onset_ids) == len(offset_ids):
|
||||
logger.info('Chasing events are equal')
|
||||
return category, timestamps
|
||||
|
||||
|
||||
# Correct the wrong chasing events; delete double events
|
||||
wrong_ids = []
|
||||
for i in range(len(longer_array)-(len_diff+1)):
|
||||
if (shorter_array[i] > longer_array[i]) & (shorter_array[i] < longer_array[i+1]):
|
||||
pass
|
||||
else:
|
||||
wrong_ids.append(longer_array[i])
|
||||
longer_array = np.delete(longer_array, i)
|
||||
|
||||
category = np.delete(
|
||||
category, wrong_ids)
|
||||
timestamps = np.delete(
|
||||
timestamps, wrong_ids)
|
||||
return category, timestamps
|
||||
|
||||
|
||||
|
||||
def main(datapath: str):
|
||||
# behabvior is pandas dataframe with all the data
|
||||
bh = Behavior(datapath)
|
||||
# chirps are not sorted in time (presumably due to prior groupings)
|
||||
# get and sort chirps and corresponding fish_ids of the chirps
|
||||
chirps = bh.chirps[np.argsort(bh.chirps)]
|
||||
chirps_fish_ids = bh.chirps_ids[np.argsort(bh.chirps)]
|
||||
category = bh.behavior
|
||||
timestamps = bh.start_s
|
||||
# Correct for doubles in chasing on- and offsets to get the right on-/offset pairs
|
||||
# Get rid of tracking faults (two onsets or two offsets after another)
|
||||
category, timestamps = correct_chasing_events(category, timestamps)
|
||||
|
||||
# split categories
|
||||
chasing_onset = (timestamps[category == 0]/ 60) /60
|
||||
chasing_offset = (timestamps[category == 1]/ 60) /60
|
||||
physical_contact = (timestamps[category == 2] / 60) /60
|
||||
|
||||
all_fish_ids = np.unique(chirps_fish_ids)
|
||||
fish1_id = all_fish_ids[0]
|
||||
fish2_id = all_fish_ids[1]
|
||||
# Associate chirps to inidividual fish
|
||||
fish1 = (chirps[chirps_fish_ids == fish1_id] / 60) /60
|
||||
fish2 = (chirps[chirps_fish_ids == fish2_id] / 60) /60
|
||||
fish1_color = ps.red
|
||||
fish2_color = ps.orange
|
||||
|
||||
fig, ax = plt.subplots(4, 1, figsize=(10, 5), height_ratios=[0.5, 0.5, 0.5, 6], sharex=True)
|
||||
# marker size
|
||||
s = 200
|
||||
ax[0].scatter(physical_contact, np.ones(len(physical_contact)), color='firebrick', marker='|', s=s)
|
||||
ax[1].scatter(chasing_onset, np.ones(len(chasing_onset)), color='green', marker='|', s=s )
|
||||
ax[2].scatter(fish1, np.ones(len(fish1))-0.25, color=fish1_color, marker='|', s=s)
|
||||
ax[2].scatter(fish2, np.zeros(len(fish2))+0.25, color=fish2_color, marker='|', s=s)
|
||||
|
||||
|
||||
freq_temp = bh.freq[bh.ident==fish1_id]
|
||||
time_temp = bh.time[bh.idx[bh.ident==fish1_id]]
|
||||
ax[3].plot((time_temp/ 60) /60, freq_temp, color=fish1_color)
|
||||
|
||||
freq_temp = bh.freq[bh.ident==fish2_id]
|
||||
time_temp = bh.time[bh.idx[bh.ident==fish2_id]]
|
||||
ax[3].plot((time_temp/ 60) /60, freq_temp, color=fish2_color)
|
||||
|
||||
#ax[3].imshow(decibel(bh.spec), extent=[bh.time[0]/60/60, bh.time[-1]/60/60, 0, 2000], aspect='auto', origin='lower')
|
||||
|
||||
# Hide grid lines
|
||||
ax[0].grid(False)
|
||||
ax[0].set_frame_on(False)
|
||||
ax[0].set_xticks([])
|
||||
ax[0].set_yticks([])
|
||||
ps.hide_ax(ax[0])
|
||||
|
||||
|
||||
ax[1].grid(False)
|
||||
ax[1].set_frame_on(False)
|
||||
ax[1].set_xticks([])
|
||||
ax[1].set_yticks([])
|
||||
ps.hide_ax(ax[1])
|
||||
|
||||
ax[2].grid(False)
|
||||
ax[2].set_frame_on(False)
|
||||
ax[2].set_yticks([])
|
||||
ax[2].set_xticks([])
|
||||
ps.hide_ax(ax[2])
|
||||
|
||||
|
||||
|
||||
ax[3].axvspan(0, 3, 0, 5, facecolor='grey', alpha=0.5)
|
||||
ax[3].set_xticks(np.arange(0, 6.1, 0.5))
|
||||
|
||||
labelpad = 40
|
||||
ax[0].set_ylabel('Physical contact', rotation=0, labelpad=labelpad)
|
||||
ax[1].set_ylabel('Chasing events', rotation=0, labelpad=labelpad)
|
||||
ax[2].set_ylabel('Chirps', rotation=0, labelpad=labelpad)
|
||||
ax[3].set_ylabel('EODf')
|
||||
|
||||
ax[3].set_xlabel('Time [h]')
|
||||
|
||||
plt.show()
|
||||
|
||||
foldernames = [datapath + x + '/' for x in os.listdir(datapath) if os.path.isdir(datapath+x)]
|
||||
for foldername in foldernames:
|
||||
if foldername == '../data/mount_data/2020-05-12-10_00/':
|
||||
continue
|
||||
# behabvior is pandas dataframe with all the data
|
||||
bh = Behavior(foldername)
|
||||
|
||||
category = bh.behavior
|
||||
timestamps = bh.start_s
|
||||
# Correct for doubles in chasing on- and offsets to get the right on-/offset pairs
|
||||
# Get rid of tracking faults (two onsets or two offsets after another)
|
||||
category, timestamps = correct_chasing_events(category, timestamps)
|
||||
|
||||
# split categories
|
||||
chasing_onset = (timestamps[category == 0]/ 60) /60
|
||||
chasing_offset = (timestamps[category == 1]/ 60) /60
|
||||
physical_contact = (timestamps[category == 2] / 60) /60
|
||||
|
||||
all_fish_ids = np.unique(bh.chirps_ids)
|
||||
fish1_id = all_fish_ids[0]
|
||||
fish2_id = all_fish_ids[1]
|
||||
# Associate chirps to inidividual fish
|
||||
fish1 = (bh.chirps[bh.chirps_ids == fish1_id] / 60) /60
|
||||
fish2 = (bh.chirps[bh.chirps_ids == fish2_id] / 60) /60
|
||||
fish1_color = ps.red
|
||||
fish2_color = ps.orange
|
||||
|
||||
fig, ax = plt.subplots(4, 1, figsize=(10, 5), height_ratios=[0.5, 0.5, 0.5, 6], sharex=True)
|
||||
# marker size
|
||||
s = 200
|
||||
ax[0].scatter(physical_contact, np.ones(len(physical_contact)), color='firebrick', marker='|', s=s)
|
||||
ax[1].scatter(chasing_onset, np.ones(len(chasing_onset)), color='green', marker='|', s=s )
|
||||
ax[2].scatter(fish1, np.ones(len(fish1))-0.25, color=fish1_color, marker='|', s=s)
|
||||
ax[2].scatter(fish2, np.zeros(len(fish2))+0.25, color=fish2_color, marker='|', s=s)
|
||||
|
||||
|
||||
freq_temp = bh.freq[bh.ident==fish1_id]
|
||||
time_temp = bh.time[bh.idx[bh.ident==fish1_id]]
|
||||
ax[3].plot((time_temp/ 60) /60, freq_temp, color=fish1_color)
|
||||
|
||||
freq_temp = bh.freq[bh.ident==fish2_id]
|
||||
time_temp = bh.time[bh.idx[bh.ident==fish2_id]]
|
||||
ax[3].plot((time_temp/ 60) /60, freq_temp, color=fish2_color)
|
||||
|
||||
#ax[3].imshow(decibel(bh.spec), extent=[bh.time[0]/60/60, bh.time[-1]/60/60, 0, 2000], aspect='auto', origin='lower')
|
||||
|
||||
# Hide grid lines
|
||||
ax[0].grid(False)
|
||||
ax[0].set_frame_on(False)
|
||||
ax[0].set_xticks([])
|
||||
ax[0].set_yticks([])
|
||||
ps.hide_ax(ax[0])
|
||||
|
||||
|
||||
ax[1].grid(False)
|
||||
ax[1].set_frame_on(False)
|
||||
ax[1].set_xticks([])
|
||||
ax[1].set_yticks([])
|
||||
ps.hide_ax(ax[1])
|
||||
|
||||
ax[2].grid(False)
|
||||
ax[2].set_frame_on(False)
|
||||
ax[2].set_yticks([])
|
||||
ax[2].set_xticks([])
|
||||
ps.hide_ax(ax[2])
|
||||
|
||||
|
||||
|
||||
ax[3].axvspan(0, 3, 0, 5, facecolor='grey', alpha=0.5)
|
||||
ax[3].set_xticks(np.arange(0, 6.1, 0.5))
|
||||
|
||||
labelpad = 40
|
||||
ax[0].set_ylabel('Physical contact', rotation=0, labelpad=labelpad)
|
||||
ax[1].set_ylabel('Chasing events', rotation=0, labelpad=labelpad)
|
||||
ax[2].set_ylabel('Chirps', rotation=0, labelpad=labelpad)
|
||||
ax[3].set_ylabel('EODf')
|
||||
|
||||
ax[3].set_xlabel('Time [h]')
|
||||
ax[0].set_title(foldername.split('/')[-2])
|
||||
|
||||
plt.show()
|
||||
embed()
|
||||
|
||||
# plot chirps
|
||||
@ -199,5 +107,5 @@ def main(datapath: str):
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Path to the data
|
||||
datapath = '../data/mount_data/2020-05-13-10_00/'
|
||||
datapath = '../data/mount_data/'
|
||||
main(datapath)
|
||||
|
Loading…
Reference in New Issue
Block a user