export functions in modules, plot chirp
This commit is contained in:
parent
2a32a29d4e
commit
ce560bf939
99
code/modules/behaviour_handling.py
Normal file
99
code/modules/behaviour_handling.py
Normal file
@ -0,0 +1,99 @@
|
|||||||
|
import numpy as np
|
||||||
|
|
||||||
|
import os
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from IPython import embed
|
||||||
|
|
||||||
|
|
||||||
|
from pandas import read_csv
|
||||||
|
from modules.logger import makeLogger
|
||||||
|
|
||||||
|
|
||||||
|
logger = makeLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class Behavior:
|
||||||
|
"""Load behavior data from csv file as class attributes
|
||||||
|
Attributes
|
||||||
|
----------
|
||||||
|
behavior: 0: chasing onset, 1: chasing offset, 2: physical contact
|
||||||
|
behavior_type:
|
||||||
|
behavioral_category:
|
||||||
|
comment_start:
|
||||||
|
comment_stop:
|
||||||
|
dataframe: pandas dataframe with all the data
|
||||||
|
duration_s:
|
||||||
|
media_file:
|
||||||
|
observation_date:
|
||||||
|
observation_id:
|
||||||
|
start_s: start time of the event in seconds
|
||||||
|
stop_s: stop time of the event in seconds
|
||||||
|
total_length:
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, folder_path: str) -> None:
|
||||||
|
|
||||||
|
LED_on_time_BORIS = np.load(os.path.join(folder_path, 'LED_on_time.npy'), allow_pickle=True)
|
||||||
|
|
||||||
|
csv_filename = [f for f in os.listdir(folder_path) if f.endswith('.csv')][0]
|
||||||
|
logger.info(f'CSV file: {csv_filename}')
|
||||||
|
self.dataframe = read_csv(os.path.join(folder_path, csv_filename))
|
||||||
|
|
||||||
|
self.chirps = np.load(os.path.join(folder_path, 'chirps.npy'), allow_pickle=True)
|
||||||
|
self.chirps_ids = np.load(os.path.join(folder_path, 'chirp_ids.npy'), allow_pickle=True)
|
||||||
|
|
||||||
|
self.ident = np.load(os.path.join(folder_path, 'ident_v.npy'), allow_pickle=True)
|
||||||
|
self.idx = np.load(os.path.join(folder_path, 'idx_v.npy'), allow_pickle=True)
|
||||||
|
self.freq = np.load(os.path.join(folder_path, 'fund_v.npy'), allow_pickle=True)
|
||||||
|
self.time = np.load(os.path.join(folder_path, "times.npy"), allow_pickle=True)
|
||||||
|
self.spec = np.load(os.path.join(folder_path, "spec.npy"), allow_pickle=True)
|
||||||
|
|
||||||
|
for k, key in enumerate(self.dataframe.keys()):
|
||||||
|
key = key.lower()
|
||||||
|
if ' ' in key:
|
||||||
|
key = key.replace(' ', '_')
|
||||||
|
if '(' in key:
|
||||||
|
key = key.replace('(', '')
|
||||||
|
key = key.replace(')', '')
|
||||||
|
setattr(self, key, np.array(self.dataframe[self.dataframe.keys()[k]]))
|
||||||
|
|
||||||
|
last_LED_t_BORIS = LED_on_time_BORIS[-1]
|
||||||
|
real_time_range = self.time[-1] - self.time[0]
|
||||||
|
factor = 1.034141
|
||||||
|
shift = last_LED_t_BORIS - real_time_range * factor
|
||||||
|
self.start_s = (self.start_s - shift) / factor
|
||||||
|
self.stop_s = (self.stop_s - shift) / factor
|
||||||
|
|
||||||
|
|
||||||
|
def correct_chasing_events(
|
||||||
|
category: np.ndarray,
|
||||||
|
timestamps: np.ndarray
|
||||||
|
) -> tuple[np.ndarray, np.ndarray]:
|
||||||
|
|
||||||
|
onset_ids = np.arange(
|
||||||
|
len(category))[category == 0]
|
||||||
|
offset_ids = np.arange(
|
||||||
|
len(category))[category == 1]
|
||||||
|
|
||||||
|
woring_bh = np.arange(len(category))[category!=2][:-1][np.diff(category[category!=2])==0]
|
||||||
|
if onset_ids[0] > offset_ids[0]:
|
||||||
|
offset_ids = np.delete(offset_ids, 0)
|
||||||
|
help_index = offset_ids[0]
|
||||||
|
woring_bh = np.append(woring_bh, help_index)
|
||||||
|
|
||||||
|
category = np.delete(category, woring_bh)
|
||||||
|
timestamps = np.delete(timestamps, woring_bh)
|
||||||
|
|
||||||
|
# Check whether on- or offset is longer and calculate length difference
|
||||||
|
if len(onset_ids) > len(offset_ids):
|
||||||
|
len_diff = len(onset_ids) - len(offset_ids)
|
||||||
|
logger.info(f'Onsets are greater than offsets by {len_diff}')
|
||||||
|
elif len(onset_ids) < len(offset_ids):
|
||||||
|
len_diff = len(offset_ids) - len(onset_ids)
|
||||||
|
logger.info(f'Offsets are greater than onsets by {len_diff}')
|
||||||
|
elif len(onset_ids) == len(offset_ids):
|
||||||
|
logger.info('Chasing events are equal')
|
||||||
|
|
||||||
|
|
||||||
|
return category, timestamps
|
@ -10,100 +10,13 @@ from IPython import embed
|
|||||||
from pandas import read_csv
|
from pandas import read_csv
|
||||||
from modules.logger import makeLogger
|
from modules.logger import makeLogger
|
||||||
from modules.plotstyle import PlotStyle
|
from modules.plotstyle import PlotStyle
|
||||||
|
from modules.behaviour_handling import Behavior, correct_chasing_events
|
||||||
|
|
||||||
ps = PlotStyle()
|
ps = PlotStyle()
|
||||||
|
|
||||||
logger = makeLogger(__name__)
|
logger = makeLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class Behavior:
|
|
||||||
"""Load behavior data from csv file as class attributes
|
|
||||||
Attributes
|
|
||||||
----------
|
|
||||||
behavior: 0: chasing onset, 1: chasing offset, 2: physical contact
|
|
||||||
behavior_type:
|
|
||||||
behavioral_category:
|
|
||||||
comment_start:
|
|
||||||
comment_stop:
|
|
||||||
dataframe: pandas dataframe with all the data
|
|
||||||
duration_s:
|
|
||||||
media_file:
|
|
||||||
observation_date:
|
|
||||||
observation_id:
|
|
||||||
start_s: start time of the event in seconds
|
|
||||||
stop_s: stop time of the event in seconds
|
|
||||||
total_length:
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, folder_path: str) -> None:
|
|
||||||
LED_on_time_BORIS = np.load(os.path.join(folder_path, 'LED_on_time.npy'), allow_pickle=True)
|
|
||||||
|
|
||||||
csv_filename = [f for f in os.listdir(folder_path) if f.endswith('.csv')][0]
|
|
||||||
logger.info(f'CSV file: {csv_filename}')
|
|
||||||
self.dataframe = read_csv(os.path.join(folder_path, csv_filename))
|
|
||||||
|
|
||||||
self.chirps = np.load(os.path.join(folder_path, 'chirps.npy'), allow_pickle=True)
|
|
||||||
self.chirps_ids = np.load(os.path.join(folder_path, 'chirp_ids.npy'), allow_pickle=True)
|
|
||||||
|
|
||||||
self.ident = np.load(os.path.join(folder_path, 'ident_v.npy'), allow_pickle=True)
|
|
||||||
self.idx = np.load(os.path.join(folder_path, 'idx_v.npy'), allow_pickle=True)
|
|
||||||
self.freq = np.load(os.path.join(folder_path, 'fund_v.npy'), allow_pickle=True)
|
|
||||||
self.time = np.load(os.path.join(folder_path, "times.npy"), allow_pickle=True)
|
|
||||||
self.spec = np.load(os.path.join(folder_path, "spec.npy"), allow_pickle=True)
|
|
||||||
|
|
||||||
for k, key in enumerate(self.dataframe.keys()):
|
|
||||||
key = key.lower()
|
|
||||||
if ' ' in key:
|
|
||||||
key = key.replace(' ', '_')
|
|
||||||
if '(' in key:
|
|
||||||
key = key.replace('(', '')
|
|
||||||
key = key.replace(')', '')
|
|
||||||
setattr(self, key, np.array(self.dataframe[self.dataframe.keys()[k]]))
|
|
||||||
|
|
||||||
last_LED_t_BORIS = LED_on_time_BORIS[-1]
|
|
||||||
real_time_range = self.time[-1] - self.time[0]
|
|
||||||
factor = 1.034141
|
|
||||||
shift = last_LED_t_BORIS - real_time_range * factor
|
|
||||||
self.start_s = (self.start_s - shift) / factor
|
|
||||||
self.stop_s = (self.stop_s - shift) / factor
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def correct_chasing_events(
|
|
||||||
category: np.ndarray,
|
|
||||||
timestamps: np.ndarray
|
|
||||||
) -> tuple[np.ndarray, np.ndarray]:
|
|
||||||
|
|
||||||
onset_ids = np.arange(
|
|
||||||
len(category))[category == 0]
|
|
||||||
offset_ids = np.arange(
|
|
||||||
len(category))[category == 1]
|
|
||||||
|
|
||||||
woring_bh = np.arange(len(category))[category!=2][:-1][np.diff(category[category!=2])==0]
|
|
||||||
if onset_ids[0] > offset_ids[0]:
|
|
||||||
offset_ids = np.delete(offset_ids, 0)
|
|
||||||
help_index = offset_ids[0]
|
|
||||||
woring_bh = np.append(woring_bh, help_index)
|
|
||||||
|
|
||||||
category = np.delete(category, woring_bh)
|
|
||||||
timestamps = np.delete(timestamps, woring_bh)
|
|
||||||
|
|
||||||
# Check whether on- or offset is longer and calculate length difference
|
|
||||||
if len(onset_ids) > len(offset_ids):
|
|
||||||
len_diff = len(onset_ids) - len(offset_ids)
|
|
||||||
logger.info(f'Onsets are greater than offsets by {len_diff}')
|
|
||||||
elif len(onset_ids) < len(offset_ids):
|
|
||||||
len_diff = len(offset_ids) - len(onset_ids)
|
|
||||||
logger.info(f'Offsets are greater than onsets by {len_diff}')
|
|
||||||
elif len(onset_ids) == len(offset_ids):
|
|
||||||
logger.info('Chasing events are equal')
|
|
||||||
|
|
||||||
|
|
||||||
return category, timestamps
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def main(datapath: str):
|
def main(datapath: str):
|
||||||
|
|
||||||
foldernames = [datapath + x + '/' for x in os.listdir(datapath) if os.path.isdir(datapath+x)]
|
foldernames = [datapath + x + '/' for x in os.listdir(datapath) if os.path.isdir(datapath+x)]
|
||||||
|
@ -10,115 +10,22 @@ from IPython import embed
|
|||||||
from pandas import read_csv
|
from pandas import read_csv
|
||||||
from modules.logger import makeLogger
|
from modules.logger import makeLogger
|
||||||
from modules.plotstyle import PlotStyle
|
from modules.plotstyle import PlotStyle
|
||||||
|
from modules.behaviour_handling import Behavior, correct_chasing_events
|
||||||
|
|
||||||
ps = PlotStyle()
|
ps = PlotStyle()
|
||||||
|
|
||||||
logger = makeLogger(__name__)
|
logger = makeLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class Behavior:
|
|
||||||
"""Load behavior data from csv file as class attributes
|
|
||||||
Attributes
|
|
||||||
----------
|
|
||||||
behavior: 0: chasing onset, 1: chasing offset, 2: physical contact
|
|
||||||
behavior_type:
|
|
||||||
behavioral_category:
|
|
||||||
comment_start:
|
|
||||||
comment_stop:
|
|
||||||
dataframe: pandas dataframe with all the data
|
|
||||||
duration_s:
|
|
||||||
media_file:
|
|
||||||
observation_date:
|
|
||||||
observation_id:
|
|
||||||
start_s: start time of the event in seconds
|
|
||||||
stop_s: stop time of the event in seconds
|
|
||||||
total_length:
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, folder_path: str) -> None:
|
|
||||||
|
|
||||||
|
|
||||||
LED_on_time_BORIS = np.load(os.path.join(folder_path, 'LED_on_time.npy'), allow_pickle=True)
|
|
||||||
|
|
||||||
csv_filename = [f for f in os.listdir(folder_path) if f.endswith('.csv')][0]
|
|
||||||
logger.info(f'CSV file: {csv_filename}')
|
|
||||||
self.dataframe = read_csv(os.path.join(folder_path, csv_filename))
|
|
||||||
|
|
||||||
self.chirps = np.load(os.path.join(folder_path, 'chirps.npy'), allow_pickle=True)
|
|
||||||
self.chirps_ids = np.load(os.path.join(folder_path, 'chirps_ids.npy'), allow_pickle=True)
|
|
||||||
|
|
||||||
self.ident = np.load(os.path.join(folder_path, 'ident_v.npy'), allow_pickle=True)
|
|
||||||
self.idx = np.load(os.path.join(folder_path, 'idx_v.npy'), allow_pickle=True)
|
|
||||||
self.freq = np.load(os.path.join(folder_path, 'fund_v.npy'), allow_pickle=True)
|
|
||||||
self.time = np.load(os.path.join(folder_path, "times.npy"), allow_pickle=True)
|
|
||||||
self.spec = np.load(os.path.join(folder_path, "spec.npy"), allow_pickle=True)
|
|
||||||
|
|
||||||
for k, key in enumerate(self.dataframe.keys()):
|
|
||||||
key = key.lower()
|
|
||||||
if ' ' in key:
|
|
||||||
key = key.replace(' ', '_')
|
|
||||||
if '(' in key:
|
|
||||||
key = key.replace('(', '')
|
|
||||||
key = key.replace(')', '')
|
|
||||||
setattr(self, key, np.array(self.dataframe[self.dataframe.keys()[k]]))
|
|
||||||
|
|
||||||
last_LED_t_BORIS = LED_on_time_BORIS[-1]
|
|
||||||
real_time_range = self.time[-1] - self.time[0]
|
|
||||||
factor = 1.034141
|
|
||||||
shift = last_LED_t_BORIS - real_time_range * factor
|
|
||||||
self.start_s = (self.start_s - shift) / factor
|
|
||||||
self.stop_s = (self.stop_s - shift) / factor
|
|
||||||
|
|
||||||
def correct_chasing_events(
|
|
||||||
category: np.ndarray,
|
|
||||||
timestamps: np.ndarray
|
|
||||||
) -> tuple[np.ndarray, np.ndarray]:
|
|
||||||
|
|
||||||
onset_ids = np.arange(
|
|
||||||
len(category))[category == 0]
|
|
||||||
offset_ids = np.arange(
|
|
||||||
len(category))[category == 1]
|
|
||||||
|
|
||||||
# Check whether on- or offset is longer and calculate length difference
|
|
||||||
if len(onset_ids) > len(offset_ids):
|
|
||||||
len_diff = len(onset_ids) - len(offset_ids)
|
|
||||||
longer_array = onset_ids
|
|
||||||
shorter_array = offset_ids
|
|
||||||
logger.info(f'Onsets are greater than offsets by {len_diff}')
|
|
||||||
elif len(onset_ids) < len(offset_ids):
|
|
||||||
len_diff = len(offset_ids) - len(onset_ids)
|
|
||||||
longer_array = offset_ids
|
|
||||||
shorter_array = onset_ids
|
|
||||||
logger.info(f'Offsets are greater than offsets by {len_diff}')
|
|
||||||
elif len(onset_ids) == len(offset_ids):
|
|
||||||
logger.info('Chasing events are equal')
|
|
||||||
return category, timestamps
|
|
||||||
|
|
||||||
|
|
||||||
# Correct the wrong chasing events; delete double events
|
|
||||||
wrong_ids = []
|
|
||||||
for i in range(len(longer_array)-(len_diff+1)):
|
|
||||||
if (shorter_array[i] > longer_array[i]) & (shorter_array[i] < longer_array[i+1]):
|
|
||||||
pass
|
|
||||||
else:
|
|
||||||
wrong_ids.append(longer_array[i])
|
|
||||||
longer_array = np.delete(longer_array, i)
|
|
||||||
|
|
||||||
category = np.delete(
|
|
||||||
category, wrong_ids)
|
|
||||||
timestamps = np.delete(
|
|
||||||
timestamps, wrong_ids)
|
|
||||||
return category, timestamps
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def main(datapath: str):
|
def main(datapath: str):
|
||||||
|
|
||||||
|
foldernames = [datapath + x + '/' for x in os.listdir(datapath) if os.path.isdir(datapath+x)]
|
||||||
|
for foldername in foldernames:
|
||||||
|
if foldername == '../data/mount_data/2020-05-12-10_00/':
|
||||||
|
continue
|
||||||
# behabvior is pandas dataframe with all the data
|
# behabvior is pandas dataframe with all the data
|
||||||
bh = Behavior(datapath)
|
bh = Behavior(foldername)
|
||||||
# chirps are not sorted in time (presumably due to prior groupings)
|
|
||||||
# get and sort chirps and corresponding fish_ids of the chirps
|
|
||||||
chirps = bh.chirps[np.argsort(bh.chirps)]
|
|
||||||
chirps_fish_ids = bh.chirps_ids[np.argsort(bh.chirps)]
|
|
||||||
category = bh.behavior
|
category = bh.behavior
|
||||||
timestamps = bh.start_s
|
timestamps = bh.start_s
|
||||||
# Correct for doubles in chasing on- and offsets to get the right on-/offset pairs
|
# Correct for doubles in chasing on- and offsets to get the right on-/offset pairs
|
||||||
@ -130,12 +37,12 @@ def main(datapath: str):
|
|||||||
chasing_offset = (timestamps[category == 1]/ 60) /60
|
chasing_offset = (timestamps[category == 1]/ 60) /60
|
||||||
physical_contact = (timestamps[category == 2] / 60) /60
|
physical_contact = (timestamps[category == 2] / 60) /60
|
||||||
|
|
||||||
all_fish_ids = np.unique(chirps_fish_ids)
|
all_fish_ids = np.unique(bh.chirps_ids)
|
||||||
fish1_id = all_fish_ids[0]
|
fish1_id = all_fish_ids[0]
|
||||||
fish2_id = all_fish_ids[1]
|
fish2_id = all_fish_ids[1]
|
||||||
# Associate chirps to inidividual fish
|
# Associate chirps to inidividual fish
|
||||||
fish1 = (chirps[chirps_fish_ids == fish1_id] / 60) /60
|
fish1 = (bh.chirps[bh.chirps_ids == fish1_id] / 60) /60
|
||||||
fish2 = (chirps[chirps_fish_ids == fish2_id] / 60) /60
|
fish2 = (bh.chirps[bh.chirps_ids == fish2_id] / 60) /60
|
||||||
fish1_color = ps.red
|
fish1_color = ps.red
|
||||||
fish2_color = ps.orange
|
fish2_color = ps.orange
|
||||||
|
|
||||||
@ -190,6 +97,7 @@ def main(datapath: str):
|
|||||||
ax[3].set_ylabel('EODf')
|
ax[3].set_ylabel('EODf')
|
||||||
|
|
||||||
ax[3].set_xlabel('Time [h]')
|
ax[3].set_xlabel('Time [h]')
|
||||||
|
ax[0].set_title(foldername.split('/')[-2])
|
||||||
|
|
||||||
plt.show()
|
plt.show()
|
||||||
embed()
|
embed()
|
||||||
@ -199,5 +107,5 @@ def main(datapath: str):
|
|||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
# Path to the data
|
# Path to the data
|
||||||
datapath = '../data/mount_data/2020-05-13-10_00/'
|
datapath = '../data/mount_data/'
|
||||||
main(datapath)
|
main(datapath)
|
||||||
|
Loading…
Reference in New Issue
Block a user