plot works
This commit is contained in:
parent
a79fc86ab9
commit
c2de6c7060
@ -1,8 +1,7 @@
|
|||||||
from itertools import combinations, compress
|
from itertools import compress
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from tqdm import tqdm
|
|
||||||
from IPython import embed
|
from IPython import embed
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from scipy.signal import find_peaks
|
from scipy.signal import find_peaks
|
||||||
@ -12,17 +11,19 @@ from thunderfish.powerspectrum import spectrogram, decibel
|
|||||||
from sklearn.preprocessing import normalize
|
from sklearn.preprocessing import normalize
|
||||||
|
|
||||||
from modules.filters import bandpass_filter, envelope, highpass_filter
|
from modules.filters import bandpass_filter, envelope, highpass_filter
|
||||||
from modules.filehandling import ConfLoader, LoadData
|
from modules.filehandling import ConfLoader, LoadData, make_outputdir
|
||||||
from modules.datahandling import flatten, purge_duplicates, group_timestamps
|
from modules.datahandling import flatten, purge_duplicates, group_timestamps
|
||||||
from modules.plotstyle import PlotStyle
|
from modules.plotstyle import PlotStyle
|
||||||
from modules.logger import makeLogger
|
from modules.logger import makeLogger
|
||||||
|
|
||||||
logger = makeLogger(__name__)
|
logger = makeLogger(__name__)
|
||||||
|
|
||||||
ps = PlotStyle()
|
ps = PlotStyle()
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class PlotBuffer:
|
class PlotBuffer:
|
||||||
|
config: ConfLoader
|
||||||
t0: float
|
t0: float
|
||||||
dt: float
|
dt: float
|
||||||
track_id: float
|
track_id: float
|
||||||
@ -42,20 +43,20 @@ class PlotBuffer:
|
|||||||
frequency_filtered: np.ndarray
|
frequency_filtered: np.ndarray
|
||||||
frequency_peaks: np.ndarray
|
frequency_peaks: np.ndarray
|
||||||
|
|
||||||
def plot_buffer(self, chirps) -> None:
|
def plot_buffer(self, chirps: np.ndarray, plot: str) -> None:
|
||||||
|
|
||||||
logger.debug("Starting plotting")
|
logger.debug("Starting plotting")
|
||||||
|
|
||||||
# make data for plotting
|
# make data for plotting
|
||||||
|
|
||||||
# get index of track data in this time window
|
# # get index of track data in this time window
|
||||||
window_idx = np.arange(len(self.data.idx))[
|
# window_idx = np.arange(len(self.data.idx))[
|
||||||
(self.data.ident == self.track_id) & (self.data.time[self.data.idx] >= self.t0) & (
|
# (self.data.ident == self.track_id) & (self.data.time[self.data.idx] >= self.t0) & (
|
||||||
self.data.time[self.data.idx] <= (self.t0 + self.dt))
|
# self.data.time[self.data.idx] <= (self.t0 + self.dt))
|
||||||
]
|
# ]
|
||||||
|
|
||||||
# get tracked frequencies and their times
|
# get tracked frequencies and their times
|
||||||
freq_temp = self.data.freq[window_idx]
|
# freq_temp = self.data.freq[window_idx]
|
||||||
# time_temp = self.data.times[window_idx]
|
# time_temp = self.data.times[window_idx]
|
||||||
|
|
||||||
# get indices on raw data
|
# get indices on raw data
|
||||||
@ -113,7 +114,8 @@ class PlotBuffer:
|
|||||||
self.frequency_filtered[self.frequency_peaks],
|
self.frequency_filtered[self.frequency_peaks],
|
||||||
c=ps.red,
|
c=ps.red,
|
||||||
)
|
)
|
||||||
axs[0].set_ylim(np.max(self.frequency)-200, top=np.max(self.frequency)+200)
|
axs[0].set_ylim(np.max(self.frequency)-200,
|
||||||
|
top=np.max(self.frequency)+200)
|
||||||
axs[6].set_xlabel("Time [s]")
|
axs[6].set_xlabel("Time [s]")
|
||||||
axs[0].set_title("Spectrogram")
|
axs[0].set_title("Spectrogram")
|
||||||
axs[1].set_title("Fitered baseline")
|
axs[1].set_title("Fitered baseline")
|
||||||
@ -123,7 +125,16 @@ class PlotBuffer:
|
|||||||
axs[5].set_title("Search envelope")
|
axs[5].set_title("Search envelope")
|
||||||
axs[6].set_title(
|
axs[6].set_title(
|
||||||
"Filtered absolute instantaneous frequency")
|
"Filtered absolute instantaneous frequency")
|
||||||
|
|
||||||
|
if plot == 'show':
|
||||||
plt.show()
|
plt.show()
|
||||||
|
elif plot == 'save':
|
||||||
|
make_outputdir(self.config.outputdir)
|
||||||
|
out = make_outputdir(self.config.outputdir +
|
||||||
|
self.data.datapath.split('/')[-2] + '/')
|
||||||
|
|
||||||
|
plt.savefig(f"{out}{self.track_id}_{self.t0}.pdf")
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
|
||||||
def instantaneos_frequency(
|
def instantaneos_frequency(
|
||||||
@ -248,6 +259,45 @@ def double_bandpass(
|
|||||||
return (filtered_baseline, filtered_search_freq)
|
return (filtered_baseline, filtered_search_freq)
|
||||||
|
|
||||||
|
|
||||||
|
def freqmedian_allfish(data: LoadData, t0: float, dt: float) -> tuple[float, list[int]]:
|
||||||
|
"""
|
||||||
|
Calculate the median frequency of all fish in a given time window.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
data : LoadData
|
||||||
|
Data to calculate the median frequency from.
|
||||||
|
t0 : float
|
||||||
|
Start time of the window.
|
||||||
|
dt : float
|
||||||
|
Duration of the window.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
tuple[float, list[int]]
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
median_freq = []
|
||||||
|
track_ids = []
|
||||||
|
|
||||||
|
for _, track_id in enumerate(np.unique(data.ident[~np.isnan(data.ident)])):
|
||||||
|
window_idx = np.arange(len(data.idx))[
|
||||||
|
(data.ident == track_id) & (data.time[data.idx] >= t0) & (
|
||||||
|
data.time[data.idx] <= (t0 + dt))
|
||||||
|
]
|
||||||
|
|
||||||
|
if len(data.freq[window_idx]) > 0:
|
||||||
|
median_freq.append(np.median(data.freq[window_idx]))
|
||||||
|
track_ids.append(track_id)
|
||||||
|
|
||||||
|
# convert to numpy array
|
||||||
|
median_freq = np.asarray(median_freq)
|
||||||
|
track_ids = np.asarray(track_ids)
|
||||||
|
|
||||||
|
return median_freq, track_ids
|
||||||
|
|
||||||
|
|
||||||
def main(datapath: str, plot: str) -> None:
|
def main(datapath: str, plot: str) -> None:
|
||||||
|
|
||||||
assert plot in ["save", "show", "false"]
|
assert plot in ["save", "show", "false"]
|
||||||
@ -293,18 +343,13 @@ def main(datapath: str, plot: str) -> None:
|
|||||||
dtype=int
|
dtype=int
|
||||||
)
|
)
|
||||||
|
|
||||||
# # ask how many windows should be calulated
|
|
||||||
# nwindows = int(
|
|
||||||
# input("How many windows should be calculated (integer number)? "))
|
|
||||||
|
|
||||||
# ititialize lists to store data
|
# ititialize lists to store data
|
||||||
chirps = []
|
chirps = []
|
||||||
fish_ids = []
|
fish_ids = []
|
||||||
|
|
||||||
for st, start_index in tqdm(enumerate(window_starts)):
|
for st, start_index in enumerate(window_starts):
|
||||||
#print(f"Processing window {st/data.raw_rate} of {len(window_starts/data.raw_rate)}")
|
|
||||||
|
|
||||||
logger.debug(f"Processing window {st} of {len(window_starts)}")
|
logger.info(f"Processing window {st} of {len(window_starts)}")
|
||||||
|
|
||||||
# make t0 and dt
|
# make t0 and dt
|
||||||
t0 = start_index / data.raw_rate
|
t0 = start_index / data.raw_rate
|
||||||
@ -314,25 +359,12 @@ def main(datapath: str, plot: str) -> None:
|
|||||||
stop_index = start_index + window_duration
|
stop_index = start_index + window_duration
|
||||||
|
|
||||||
# calucate median of fish frequencies in window
|
# calucate median of fish frequencies in window
|
||||||
median_freq = []
|
median_freq, median_ids = freqmedian_allfish(data, t0, dt)
|
||||||
track_ids = []
|
|
||||||
for _, track_id in enumerate(np.unique(data.ident[~np.isnan(data.ident)])):
|
|
||||||
window_idx = np.arange(len(data.idx))[
|
|
||||||
(data.ident == track_id) & (data.time[data.idx] >= t0) & (
|
|
||||||
data.time[data.idx] <= (t0 + dt))
|
|
||||||
]
|
|
||||||
median_freq.append(np.median(data.freq[window_idx]))
|
|
||||||
track_ids.append(track_id)
|
|
||||||
|
|
||||||
# convert to numpy array
|
|
||||||
median_freq = np.asarray(median_freq)
|
|
||||||
track_ids = np.asarray(track_ids)
|
|
||||||
|
|
||||||
# iterate through all fish
|
# iterate through all fish
|
||||||
for tr, track_id in enumerate(np.unique(data.ident[~np.isnan(data.ident)])):
|
for tr, track_id in enumerate(np.unique(data.ident[~np.isnan(data.ident)])):
|
||||||
|
|
||||||
logger.debug(f"Processing track {tr} of {len(track_ids)}")
|
logger.debug(f"Processing track {tr} of {len(data.ids)}")
|
||||||
|
|
||||||
|
|
||||||
# get index of track data in this time window
|
# get index of track data in this time window
|
||||||
window_idx = np.arange(len(data.idx))[
|
window_idx = np.arange(len(data.idx))[
|
||||||
@ -350,10 +382,18 @@ def main(datapath: str, plot: str) -> None:
|
|||||||
expected_duration = ((t0 + dt) - t0) * track_samplerate
|
expected_duration = ((t0 + dt) - t0) * track_samplerate
|
||||||
|
|
||||||
# check if tracked data available in this window
|
# check if tracked data available in this window
|
||||||
if len(freq_temp) < expected_duration * 0.9:
|
if len(freq_temp) < expected_duration * 0.5:
|
||||||
|
logger.warning(
|
||||||
|
f"Track {track_id} has no data in window {st}, skipping.")
|
||||||
|
continue
|
||||||
|
|
||||||
|
# check if there are powers available in this window
|
||||||
|
nanchecker = np.unique(np.isnan(powers_temp))
|
||||||
|
if (len(nanchecker) == 1) and nanchecker[0] == True:
|
||||||
|
logger.warning(
|
||||||
|
f"No powers available for track {track_id} window {st}, skipping.")
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# get best electrode
|
|
||||||
best_electrodes = np.argsort(np.nanmean(
|
best_electrodes = np.argsort(np.nanmean(
|
||||||
powers_temp, axis=0))[-config.number_electrodes:]
|
powers_temp, axis=0))[-config.number_electrodes:]
|
||||||
|
|
||||||
@ -366,7 +406,7 @@ def main(datapath: str, plot: str) -> None:
|
|||||||
search_window_bool = np.ones(len(search_window), dtype=bool)
|
search_window_bool = np.ones(len(search_window), dtype=bool)
|
||||||
|
|
||||||
# get tracks that fall into search window
|
# get tracks that fall into search window
|
||||||
check_track_ids = track_ids[(median_freq > search_window[0]) & (
|
check_track_ids = median_ids[(median_freq > search_window[0]) & (
|
||||||
median_freq < search_window[-1])]
|
median_freq < search_window[-1])]
|
||||||
|
|
||||||
# iterate through theses tracks
|
# iterate through theses tracks
|
||||||
@ -429,10 +469,8 @@ def main(datapath: str, plot: str) -> None:
|
|||||||
else:
|
else:
|
||||||
search_freq = config.default_search_freq
|
search_freq = config.default_search_freq
|
||||||
|
|
||||||
#print(f"Search frequency: {search_freq}")
|
|
||||||
# ----------- chrips on the two best electrodes-----------
|
# ----------- chrips on the two best electrodes-----------
|
||||||
chirps_electrodes = []
|
chirps_electrodes = []
|
||||||
electrodes_of_chirps = []
|
|
||||||
|
|
||||||
# iterate through electrodes
|
# iterate through electrodes
|
||||||
for el, electrode in enumerate(best_electrodes):
|
for el, electrode in enumerate(best_electrodes):
|
||||||
@ -560,77 +598,6 @@ def main(datapath: str, plot: str) -> None:
|
|||||||
prominence=prominence
|
prominence=prominence
|
||||||
)
|
)
|
||||||
|
|
||||||
# # PLOT --------------------------------------------------------
|
|
||||||
|
|
||||||
# # plot spectrogram
|
|
||||||
# plot_spectrogram(
|
|
||||||
# axs[0, el], data_oi[:, electrode], data.raw_rate, t0)
|
|
||||||
|
|
||||||
# # plot baseline instantaneos frequency
|
|
||||||
|
|
||||||
# axs[1, el].plot(baseline_freq_time, baseline_freq -
|
|
||||||
# np.median(baseline_freq))
|
|
||||||
|
|
||||||
# # plot waveform of filtered signal
|
|
||||||
# axs[2, el].plot(time_oi, baseline, c=ps.green)
|
|
||||||
|
|
||||||
# # plot broad filtered baseline
|
|
||||||
# axs[2, el].plot(
|
|
||||||
# time_oi,
|
|
||||||
# broad_baseline,
|
|
||||||
# )
|
|
||||||
|
|
||||||
# # plot narrow filtered baseline envelope
|
|
||||||
# axs[2, el].plot(
|
|
||||||
# time_oi,
|
|
||||||
# baseline_envelope_unfiltered,
|
|
||||||
# c=ps.red
|
|
||||||
# )
|
|
||||||
|
|
||||||
# # plot waveform of filtered search signal
|
|
||||||
# axs[3, el].plot(time_oi, search)
|
|
||||||
|
|
||||||
# # plot envelope of search signal
|
|
||||||
# axs[3, el].plot(
|
|
||||||
# time_oi,
|
|
||||||
# search_envelope,
|
|
||||||
# c=ps.red
|
|
||||||
# )
|
|
||||||
|
|
||||||
# # plot filtered and rectified envelope
|
|
||||||
# axs[4, el].plot(time_oi, baseline_envelope)
|
|
||||||
# axs[4, el].scatter(
|
|
||||||
# (time_oi)[baseline_peaks],
|
|
||||||
# baseline_envelope[baseline_peaks],
|
|
||||||
# c=ps.red,
|
|
||||||
# )
|
|
||||||
|
|
||||||
# # plot envelope of search signal
|
|
||||||
# axs[5, el].plot(time_oi, search_envelope)
|
|
||||||
# axs[5, el].scatter(
|
|
||||||
# (time_oi)[search_peaks],
|
|
||||||
# search_envelope[search_peaks],
|
|
||||||
# c=ps.red,
|
|
||||||
# )
|
|
||||||
|
|
||||||
# # plot filtered instantaneous frequency
|
|
||||||
# axs[6, el].plot(baseline_freq_time, np.abs(inst_freq_filtered))
|
|
||||||
# axs[6, el].scatter(
|
|
||||||
# baseline_freq_time[inst_freq_peaks],
|
|
||||||
# np.abs(inst_freq_filtered)[inst_freq_peaks],
|
|
||||||
# c=ps.red,
|
|
||||||
# )
|
|
||||||
|
|
||||||
# axs[6, el].set_xlabel("Time [s]")
|
|
||||||
# axs[0, el].set_title("Spectrogram")
|
|
||||||
# axs[1, el].set_title("Fitered baseline instanenous frequency")
|
|
||||||
# axs[2, el].set_title("Fitered baseline")
|
|
||||||
# axs[3, el].set_title("Fitered above")
|
|
||||||
# axs[4, el].set_title("Filtered envelope of baseline envelope")
|
|
||||||
# axs[5, el].set_title("Search envelope")
|
|
||||||
# axs[6, el].set_title(
|
|
||||||
# "Filtered absolute instantaneous frequency")
|
|
||||||
|
|
||||||
# DETECT CHIRPS IN SEARCH WINDOW -------------------------------
|
# DETECT CHIRPS IN SEARCH WINDOW -------------------------------
|
||||||
|
|
||||||
baseline_ts = time_oi[baseline_peaks]
|
baseline_ts = time_oi[baseline_peaks]
|
||||||
@ -641,69 +608,14 @@ def main(datapath: str, plot: str) -> None:
|
|||||||
if len(baseline_ts) == 0 or len(search_ts) == 0 or len(freq_ts) == 0:
|
if len(baseline_ts) == 0 or len(search_ts) == 0 or len(freq_ts) == 0:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# current_chirps = group_timestamps_v2(
|
current_chirps = group_timestamps(
|
||||||
# [list(baseline_ts), list(search_ts), list(freq_ts)], 3)
|
[list(baseline_ts), list(search_ts), list(freq_ts)], 3, config.chirp_window_threshold)
|
||||||
|
|
||||||
# get index for each feature
|
|
||||||
baseline_idx = np.zeros_like(baseline_ts)
|
|
||||||
search_idx = np.ones_like(search_ts)
|
|
||||||
freq_idx = np.ones_like(freq_ts) * 2
|
|
||||||
|
|
||||||
timestamps_features = np.hstack(
|
|
||||||
[baseline_idx, search_idx, freq_idx])
|
|
||||||
timestamps = np.hstack([baseline_ts, search_ts, freq_ts])
|
|
||||||
|
|
||||||
# sort timestamps
|
|
||||||
timestamps_idx = np.arange(len(timestamps))
|
|
||||||
timestamps_features = timestamps_features[np.argsort(
|
|
||||||
timestamps)]
|
|
||||||
timestamps = timestamps[np.argsort(timestamps)]
|
|
||||||
|
|
||||||
# # get chirps
|
|
||||||
# diff = np.empty(timestamps.shape)
|
|
||||||
# diff[0] = np.inf # always retain the 1st element
|
|
||||||
# diff[1:] = np.diff(timestamps)
|
|
||||||
# mask = diff < config.chirp_window_threshold
|
|
||||||
# shared_peak_indices = timestamp_idx[mask]
|
|
||||||
|
|
||||||
current_chirps = []
|
|
||||||
bool_timestamps = np.ones_like(timestamps, dtype=bool)
|
|
||||||
for bo, tt in enumerate(timestamps):
|
|
||||||
if bool_timestamps[bo] is False:
|
|
||||||
continue
|
|
||||||
cm = timestamps_idx[(timestamps >= tt) & (
|
|
||||||
timestamps <= tt + config.chirp_window_threshold)]
|
|
||||||
if set([0, 1, 2]).issubset(timestamps_features[cm]):
|
|
||||||
current_chirps.append(np.mean(timestamps[cm]))
|
|
||||||
electrodes_of_chirps.append(el)
|
|
||||||
bool_timestamps[cm] = False
|
|
||||||
|
|
||||||
# for checking if there are chirps on multiple electrodes
|
# for checking if there are chirps on multiple electrodes
|
||||||
if len(current_chirps) == 0:
|
if len(current_chirps) == 0:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
chirps_electrodes.append(current_chirps)
|
chirps_electrodes.append(current_chirps)
|
||||||
|
|
||||||
# for ct in current_chirps:
|
|
||||||
# axs[0, el].axvline(ct, color='r', lw=1)
|
|
||||||
|
|
||||||
# axs[0, el].scatter(
|
|
||||||
# baseline_freq_time[inst_freq_peaks],
|
|
||||||
# np.ones_like(baseline_freq_time[inst_freq_peaks]) * 600,
|
|
||||||
# c=ps.red,
|
|
||||||
# )
|
|
||||||
# axs[0, el].scatter(
|
|
||||||
# (time_oi)[search_peaks],
|
|
||||||
# np.ones_like((time_oi)[search_peaks]) * 600,
|
|
||||||
# c=ps.red,
|
|
||||||
# )
|
|
||||||
|
|
||||||
# axs[0, el].scatter(
|
|
||||||
# (time_oi)[baseline_peaks],
|
|
||||||
# np.ones_like((time_oi)[baseline_peaks]) * 600,
|
|
||||||
# c=ps.red,
|
|
||||||
# )
|
|
||||||
|
|
||||||
if (el == config.number_electrodes - 1) & \
|
if (el == config.number_electrodes - 1) & \
|
||||||
(len(current_chirps) > 0) & \
|
(len(current_chirps) > 0) & \
|
||||||
(plot in ["show", "save"]):
|
(plot in ["show", "save"]):
|
||||||
@ -712,6 +624,7 @@ def main(datapath: str, plot: str) -> None:
|
|||||||
|
|
||||||
# save data to Buffer
|
# save data to Buffer
|
||||||
buffer = PlotBuffer(
|
buffer = PlotBuffer(
|
||||||
|
config=config,
|
||||||
t0=t0,
|
t0=t0,
|
||||||
dt=dt,
|
dt=dt,
|
||||||
electrode=electrode,
|
electrode=electrode,
|
||||||
@ -735,70 +648,19 @@ def main(datapath: str, plot: str) -> None:
|
|||||||
logger.debug(
|
logger.debug(
|
||||||
f"Processed all electrodes for fish {track_id} for this window, sorting chirps ...")
|
f"Processed all electrodes for fish {track_id} for this window, sorting chirps ...")
|
||||||
|
|
||||||
# continue if no chirps for current fish
|
|
||||||
|
|
||||||
# make one array
|
|
||||||
# chirps_electrodes = np.concatenate(chirps_electrodes)
|
|
||||||
|
|
||||||
# make shure they are numpy arrays
|
|
||||||
# electrodes_of_chirps = np.asarray(electrodes_of_chirps)
|
|
||||||
|
|
||||||
# # sort them
|
|
||||||
# sort_chirps_electrodes = chirps_electrodes[np.argsort(
|
|
||||||
# chirps_electrodes)]
|
|
||||||
# sort_electrodes = electrodes_of_chirps[np.argsort(
|
|
||||||
# chirps_electrodes)]
|
|
||||||
# bool_vector = np.ones(len(sort_chirps_electrodes), dtype=bool)
|
|
||||||
|
|
||||||
# # make index vector
|
|
||||||
# index_vector = np.arange(len(sort_chirps_electrodes))
|
|
||||||
|
|
||||||
# # make it more than only two electrodes for the search after chirps
|
|
||||||
# combinations_best_elctrodes = list(
|
|
||||||
# combinations(range(3), 2))
|
|
||||||
|
|
||||||
if len(chirps_electrodes) == 0:
|
if len(chirps_electrodes) == 0:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
the_real_chirps = group_timestamps(chirps_electrodes, 2, 0.05)
|
the_real_chirps = group_timestamps(chirps_electrodes, 2, 0.05)
|
||||||
|
|
||||||
# for chirp_index, seoc in enumerate(sort_chirps_electrodes):
|
|
||||||
# if bool_vector[chirp_index] is False:
|
|
||||||
# continue
|
|
||||||
# cm = index_vector[(sort_chirps_electrodes >= seoc) & (
|
|
||||||
# sort_chirps_electrodes <= seoc + config.chirp_window_threshold)]
|
|
||||||
|
|
||||||
# chirps_unique = []
|
|
||||||
# for combination in combinations_best_elctrodes:
|
|
||||||
# if set(combination).issubset(sort_electrodes[cm]):
|
|
||||||
# chirps_unique.append(
|
|
||||||
# np.mean(sort_chirps_electrodes[cm]))
|
|
||||||
|
|
||||||
# the_real_chirps.append(np.mean(chirps_unique))
|
|
||||||
|
|
||||||
# """
|
|
||||||
# if set([0,1]).issubset(sort_electrodes[cm]):
|
|
||||||
# the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
|
||||||
# elif set([1,0]).issubset(sort_electrodes[cm]):
|
|
||||||
# the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
|
||||||
# elif set([0,2]).issubset(sort_electrodes[cm]):
|
|
||||||
# the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
|
||||||
# elif set([1,2]).issubset(sort_electrodes[cm]):
|
|
||||||
# the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
|
||||||
# """
|
|
||||||
# bool_vector[cm] = False
|
|
||||||
|
|
||||||
chirps.append(the_real_chirps)
|
chirps.append(the_real_chirps)
|
||||||
fish_ids.append(track_id)
|
fish_ids.append(track_id)
|
||||||
|
|
||||||
# for ct in the_real_chirps:
|
|
||||||
# axs[0, el].axvline(ct, color='b', lw=1)
|
|
||||||
|
|
||||||
logger.debug('Found %d chirps, starting plotting ... ' %
|
logger.debug('Found %d chirps, starting plotting ... ' %
|
||||||
len(the_real_chirps))
|
len(the_real_chirps))
|
||||||
if len(the_real_chirps) > 0:
|
if len(the_real_chirps) > 0:
|
||||||
try:
|
try:
|
||||||
buffer.plot_buffer(the_real_chirps)
|
buffer.plot_buffer(the_real_chirps, plot)
|
||||||
except NameError:
|
except NameError:
|
||||||
pass
|
pass
|
||||||
else:
|
else:
|
||||||
@ -807,14 +669,6 @@ def main(datapath: str, plot: str) -> None:
|
|||||||
except NameError:
|
except NameError:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
# fig, ax = plt.subplots()
|
|
||||||
# t0 = (3 * 60 * 60 + 6 * 60 + 43.5)
|
|
||||||
# data_oi = data.raw[window_starts[0]:window_starts[-1] + int(dt*data.raw_rate), 10]
|
|
||||||
# plot_spectrogram(ax, data_oi, data.raw_rate, t0)
|
|
||||||
# chirps_concat = np.concatenate(chirps)
|
|
||||||
# for ch in chirps_concat:
|
|
||||||
# ax. axvline(ch, color='b', lw=1)
|
|
||||||
|
|
||||||
chirps_new = []
|
chirps_new = []
|
||||||
chirps_ids = []
|
chirps_ids = []
|
||||||
for tr in np.unique(fish_ids):
|
for tr in np.unique(fish_ids):
|
||||||
@ -837,4 +691,4 @@ def main(datapath: str, plot: str) -> None:
|
|||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
datapath = "../data/2022-06-02-10_00/"
|
datapath = "../data/2022-06-02-10_00/"
|
||||||
main(datapath, plot="show")
|
main(datapath, plot="save")
|
||||||
|
4
code/chirpdetector_conf.yml
Normal file → Executable file
4
code/chirpdetector_conf.yml
Normal file → Executable file
@ -1,3 +1,6 @@
|
|||||||
|
dataroot: "../data/"
|
||||||
|
outputdir: "../output/"
|
||||||
|
|
||||||
# Duration and overlap of the analysis window in seconds
|
# Duration and overlap of the analysis window in seconds
|
||||||
window: 5
|
window: 5
|
||||||
overlap: 1
|
overlap: 1
|
||||||
@ -40,7 +43,6 @@ search_freq_percentiles:
|
|||||||
- 95
|
- 95
|
||||||
default_search_freq: 50
|
default_search_freq: 50
|
||||||
|
|
||||||
|
|
||||||
chirp_window_threshold: 0.05
|
chirp_window_threshold: 0.05
|
||||||
|
|
||||||
|
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from typing import List, Union, Any
|
from typing import List, Any
|
||||||
|
|
||||||
|
|
||||||
def purge_duplicates(
|
def purge_duplicates(
|
||||||
|
@ -36,6 +36,7 @@ class LoadData:
|
|||||||
def __init__(self, datapath: str) -> None:
|
def __init__(self, datapath: str) -> None:
|
||||||
|
|
||||||
# load raw data
|
# load raw data
|
||||||
|
self.datapath = datapath
|
||||||
self.file = os.path.join(datapath, "traces-grid1.raw")
|
self.file = os.path.join(datapath, "traces-grid1.raw")
|
||||||
self.raw = DataLoader(self.file, 60.0, 0, channel=-1)
|
self.raw = DataLoader(self.file, 60.0, 0, channel=-1)
|
||||||
self.raw_rate = self.raw.samplerate
|
self.raw_rate = self.raw.samplerate
|
||||||
@ -53,3 +54,23 @@ class LoadData:
|
|||||||
|
|
||||||
def __str__(self) -> str:
|
def __str__(self) -> str:
|
||||||
return f"LoadData({self.file})"
|
return f"LoadData({self.file})"
|
||||||
|
|
||||||
|
|
||||||
|
def make_outputdir(path: str) -> str:
|
||||||
|
"""
|
||||||
|
Creates a new directory where the path leads if it does not already exist.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
path : string
|
||||||
|
path to the new output directory
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
string
|
||||||
|
path of the newly created output directory
|
||||||
|
"""
|
||||||
|
|
||||||
|
if os.path.isdir(path) == False:
|
||||||
|
os.mkdir(path)
|
||||||
|
return path
|
||||||
|
@ -23,7 +23,7 @@ def makeLogger(name: str):
|
|||||||
logger = logging.getLogger(name)
|
logger = logging.getLogger(name)
|
||||||
logger.addHandler(file_handler)
|
logger.addHandler(file_handler)
|
||||||
logger.addHandler(console_handler)
|
logger.addHandler(console_handler)
|
||||||
logger.setLevel(logging.DEBUG)
|
logger.setLevel(logging.INFO)
|
||||||
|
|
||||||
return logger
|
return logger
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user