making things worse
This commit is contained in:
parent
89823fdc28
commit
c070192996
@ -17,11 +17,106 @@ ps = PlotStyle()
|
|||||||
logger = makeLogger(__name__)
|
logger = makeLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
def get_chirp_winner_loser(folder_name, Behavior, order_meta_df):
|
||||||
|
|
||||||
|
foldername = folder_name.split('/')[-2]
|
||||||
|
winner_row = order_meta_df[order_meta_df['recording'] == foldername]
|
||||||
|
winner = winner_row['winner'].values[0].astype(int)
|
||||||
|
winner_fish1 = winner_row['fish1'].values[0].astype(int)
|
||||||
|
winner_fish2 = winner_row['fish2'].values[0].astype(int)
|
||||||
|
|
||||||
|
if winner > 0:
|
||||||
|
if winner == winner_fish1:
|
||||||
|
winner_fish_id = winner_row['rec_id1'].values[0]
|
||||||
|
loser_fish_id = winner_row['rec_id2'].values[0]
|
||||||
|
|
||||||
|
elif winner == winner_fish2:
|
||||||
|
winner_fish_id = winner_row['rec_id2'].values[0]
|
||||||
|
loser_fish_id = winner_row['rec_id1'].values[0]
|
||||||
|
|
||||||
|
chirp_winner = len(
|
||||||
|
Behavior.chirps[Behavior.chirps_ids == winner_fish_id])
|
||||||
|
chirp_loser = len(
|
||||||
|
Behavior.chirps[Behavior.chirps_ids == loser_fish_id])
|
||||||
|
|
||||||
|
return chirp_winner, chirp_loser
|
||||||
|
else:
|
||||||
|
return np.nan, np.nan
|
||||||
|
|
||||||
|
|
||||||
|
def get_chirp_size(folder_name, Behavior, order_meta_df, id_meta_df):
|
||||||
|
|
||||||
|
foldername = folder_name.split('/')[-2]
|
||||||
|
folder_row = order_meta_df[order_meta_df['recording'] == foldername]
|
||||||
|
fish1 = folder_row['fish1'].values[0].astype(int)
|
||||||
|
fish2 = folder_row['fish2'].values[0].astype(int)
|
||||||
|
|
||||||
|
groub = folder_row['group'].values[0].astype(int)
|
||||||
|
size_fish1_row = id_meta_df[(id_meta_df['group'] == groub) & (
|
||||||
|
id_meta_df['fish'] == fish1)]
|
||||||
|
size_fish2_row = id_meta_df[(id_meta_df['group'] == groub) & (
|
||||||
|
id_meta_df['fish'] == fish2)]
|
||||||
|
|
||||||
|
size_winners = [size_fish1_row[col].values[0]
|
||||||
|
for col in ['l1', 'l2', 'l3']]
|
||||||
|
mean_size_winner = np.nanmean(size_winners)
|
||||||
|
|
||||||
|
size_losers = [size_fish2_row[col].values[0] for col in ['l1', 'l2', 'l3']]
|
||||||
|
mean_size_loser = np.nanmean(size_losers)
|
||||||
|
|
||||||
|
if mean_size_winner > mean_size_loser:
|
||||||
|
size_diff = mean_size_winner - mean_size_loser
|
||||||
|
winner_fish_id = folder_row['rec_id1'].values[0]
|
||||||
|
loser_fish_id = folder_row['rec_id2'].values[0]
|
||||||
|
|
||||||
|
elif mean_size_winner < mean_size_loser:
|
||||||
|
size_diff = mean_size_loser - mean_size_winner
|
||||||
|
winner_fish_id = folder_row['rec_id2'].values[0]
|
||||||
|
loser_fish_id = folder_row['rec_id1'].values[0]
|
||||||
|
|
||||||
|
else:
|
||||||
|
size_diff = np.nan
|
||||||
|
winner_fish_id = np.nan
|
||||||
|
loser_fish_id = np.nan
|
||||||
|
|
||||||
|
chirp_diff = len(Behavior.chirps[Behavior.chirps_ids == winner_fish_id]) - len(
|
||||||
|
Behavior.chirps[Behavior.chirps_ids == loser_fish_id])
|
||||||
|
|
||||||
|
return size_diff, chirp_diff
|
||||||
|
|
||||||
|
|
||||||
|
def get_chirp_freq(folder_name, Behavior, order_meta_df):
|
||||||
|
|
||||||
|
foldername = folder_name.split('/')[-2]
|
||||||
|
folder_row = order_meta_df[order_meta_df['recording'] == foldername]
|
||||||
|
fish1 = folder_row['rec_id1'].values[0].astype(int)
|
||||||
|
fish2 = folder_row['rec_id2'].values[0].astype(int)
|
||||||
|
chirp_freq_fish1 = np.nanmedian(
|
||||||
|
Behavior.freq[Behavior.ident == fish1])
|
||||||
|
chirp_freq_fish2 = np.nanmedian(
|
||||||
|
Behavior.freq[Behavior.ident == fish2])
|
||||||
|
|
||||||
|
if chirp_freq_fish1 > chirp_freq_fish2:
|
||||||
|
freq_diff = chirp_freq_fish1 - chirp_freq_fish2
|
||||||
|
winner_fish_id = folder_row['rec_id1'].values[0]
|
||||||
|
loser_fish_id = folder_row['rec_id2'].values[0]
|
||||||
|
|
||||||
|
elif chirp_freq_fish1 < chirp_freq_fish2:
|
||||||
|
freq_diff = chirp_freq_fish2 - chirp_freq_fish1
|
||||||
|
winner_fish_id = folder_row['rec_id2'].values[0]
|
||||||
|
loser_fish_id = folder_row['rec_id1'].values[0]
|
||||||
|
|
||||||
|
chirp_diff = len(Behavior.chirps[Behavior.chirps_ids == winner_fish_id]) - len(
|
||||||
|
Behavior.chirps[Behavior.chirps_ids == loser_fish_id])
|
||||||
|
|
||||||
|
return freq_diff, chirp_diff
|
||||||
|
|
||||||
|
|
||||||
def main(datapath: str):
|
def main(datapath: str):
|
||||||
|
|
||||||
foldernames = [
|
foldernames = [
|
||||||
datapath + x + '/' for x in os.listdir(datapath) if os.path.isdir(datapath+x)]
|
datapath + x + '/' for x in os.listdir(datapath) if os.path.isdir(datapath+x)]
|
||||||
path_order_meta = (
|
path_order_meta = (
|
||||||
'/').join(foldernames[0].split('/')[:-2]) + '/order_meta.csv'
|
'/').join(foldernames[0].split('/')[:-2]) + '/order_meta.csv'
|
||||||
order_meta_df = read_csv(path_order_meta)
|
order_meta_df = read_csv(path_order_meta)
|
||||||
order_meta_df['recording'] = order_meta_df['recording'].str[1:-1]
|
order_meta_df['recording'] = order_meta_df['recording'].str[1:-1]
|
||||||
@ -30,11 +125,11 @@ def main(datapath: str):
|
|||||||
id_meta_df = read_csv(path_id_meta)
|
id_meta_df = read_csv(path_id_meta)
|
||||||
|
|
||||||
chirps_winner = []
|
chirps_winner = []
|
||||||
size_diff = []
|
size_diffs = []
|
||||||
chirps_diff = []
|
size_chirps_diffs = []
|
||||||
chirps_loser = []
|
chirps_loser = []
|
||||||
freq_diff = []
|
freq_diffs = []
|
||||||
|
freq_chirps_diffs = []
|
||||||
|
|
||||||
for foldername in foldernames:
|
for foldername in foldernames:
|
||||||
# behabvior is pandas dataframe with all the data
|
# behabvior is pandas dataframe with all the data
|
||||||
@ -49,89 +144,102 @@ def main(datapath: str):
|
|||||||
# Get rid of tracking faults (two onsets or two offsets after another)
|
# Get rid of tracking faults (two onsets or two offsets after another)
|
||||||
category, timestamps = correct_chasing_events(category, timestamps)
|
category, timestamps = correct_chasing_events(category, timestamps)
|
||||||
|
|
||||||
folder_name = foldername.split('/')[-2]
|
winner_chirp, loser_chirp = get_chirp_winner_loser(
|
||||||
winner_row = order_meta_df[order_meta_df['recording'] == folder_name]
|
foldername, bh, order_meta_df)
|
||||||
winner = winner_row['winner'].values[0].astype(int)
|
chirps_winner.append(winner_chirp)
|
||||||
winner_fish1 = winner_row['fish1'].values[0].astype(int)
|
chirps_loser.append(loser_chirp)
|
||||||
winner_fish2 = winner_row['fish2'].values[0].astype(int)
|
size_diff, chirp_diff = get_chirp_size(
|
||||||
|
foldername, bh, order_meta_df, id_meta_df)
|
||||||
groub = winner_row['group'].values[0].astype(int)
|
size_diffs.append(size_diff)
|
||||||
size_rows = id_meta_df[id_meta_df['group'] == groub]
|
size_chirps_diffs.append(chirp_diff)
|
||||||
|
|
||||||
|
freq_diff, freq_chirps_diff = get_chirp_freq(
|
||||||
if winner == winner_fish1:
|
foldername, bh, order_meta_df)
|
||||||
winner_fish_id = winner_row['rec_id1'].values[0]
|
freq_diffs.append(freq_diff)
|
||||||
loser_fish_id = winner_row['rec_id2'].values[0]
|
freq_chirps_diffs.append(freq_chirps_diff)
|
||||||
|
|
||||||
size_winners = []
|
# folder_name = foldername.split('/')[-2]
|
||||||
for l in ['l1', 'l2', 'l3']:
|
# winner_row = order_meta_df[order_meta_df['recording'] == folder_name]
|
||||||
size_winner = size_rows[size_rows['fish']== winner_fish1][l].values[0]
|
# winner = winner_row['winner'].values[0].astype(int)
|
||||||
size_winners.append(size_winner)
|
# winner_fish1 = winner_row['fish1'].values[0].astype(int)
|
||||||
mean_size_winner = np.nanmean(size_winners)
|
# winner_fish2 = winner_row['fish2'].values[0].astype(int)
|
||||||
|
|
||||||
|
# groub = winner_row['group'].values[0].astype(int)
|
||||||
size_losers = []
|
# size_rows = id_meta_df[id_meta_df['group'] == groub]
|
||||||
for l in ['l1', 'l2', 'l3']:
|
|
||||||
size_loser = size_rows[size_rows['fish']== winner_fish2][l].values[0]
|
# if winner == winner_fish1:
|
||||||
size_losers.append(size_loser)
|
# winner_fish_id = winner_row['rec_id1'].values[0]
|
||||||
mean_size_loser = np.nanmean(size_losers)
|
# loser_fish_id = winner_row['rec_id2'].values[0]
|
||||||
|
|
||||||
size_diff.append(mean_size_winner - mean_size_loser)
|
# size_winners = []
|
||||||
|
# for l in ['l1', 'l2', 'l3']:
|
||||||
elif winner == winner_fish2:
|
# size_winner = size_rows[size_rows['fish']== winner_fish1][l].values[0]
|
||||||
winner_fish_id = winner_row['rec_id2'].values[0]
|
# size_winners.append(size_winner)
|
||||||
loser_fish_id = winner_row['rec_id1'].values[0]
|
# mean_size_winner = np.nanmean(size_winners)
|
||||||
|
|
||||||
size_winners = []
|
# size_losers = []
|
||||||
for l in ['l1', 'l2', 'l3']:
|
# for l in ['l1', 'l2', 'l3']:
|
||||||
size_winner = size_rows[size_rows['fish']== winner_fish2][l].values[0]
|
# size_loser = size_rows[size_rows['fish']== winner_fish2][l].values[0]
|
||||||
size_winners.append(size_winner)
|
# size_losers.append(size_loser)
|
||||||
mean_size_winner = np.nanmean(size_winners)
|
# mean_size_loser = np.nanmean(size_losers)
|
||||||
|
|
||||||
size_losers = []
|
# size_diffs.append(mean_size_winner - mean_size_loser)
|
||||||
for l in ['l1', 'l2', 'l3']:
|
|
||||||
size_loser = size_rows[size_rows['fish']== winner_fish1][l].values[0]
|
# elif winner == winner_fish2:
|
||||||
size_losers.append(size_loser)
|
# winner_fish_id = winner_row['rec_id2'].values[0]
|
||||||
mean_size_loser = np.nanmean(size_losers)
|
# loser_fish_id = winner_row['rec_id1'].values[0]
|
||||||
|
|
||||||
size_diff.append(mean_size_winner - mean_size_loser)
|
# size_winners = []
|
||||||
else:
|
# for l in ['l1', 'l2', 'l3']:
|
||||||
continue
|
# size_winner = size_rows[size_rows['fish']== winner_fish2][l].values[0]
|
||||||
|
# size_winners.append(size_winner)
|
||||||
print(foldername)
|
# mean_size_winner = np.nanmean(size_winners)
|
||||||
all_fish_ids = np.unique(bh.chirps_ids)
|
|
||||||
chirp_winner = len(bh.chirps[bh.chirps_ids == winner_fish_id])
|
# size_losers = []
|
||||||
chirp_loser = len(bh.chirps[bh.chirps_ids == loser_fish_id])
|
# for l in ['l1', 'l2', 'l3']:
|
||||||
|
# size_loser = size_rows[size_rows['fish']== winner_fish1][l].values[0]
|
||||||
freq_winner = np.nanmedian(bh.freq[bh.ident==winner_fish_id])
|
# size_losers.append(size_loser)
|
||||||
freq_loser = np.nanmedian(bh.freq[bh.ident==loser_fish_id])
|
# mean_size_loser = np.nanmean(size_losers)
|
||||||
|
|
||||||
|
# size_diffs.append(mean_size_winner - mean_size_loser)
|
||||||
chirps_winner.append(chirp_winner)
|
# else:
|
||||||
chirps_loser.append(chirp_loser)
|
# pass
|
||||||
|
|
||||||
chirps_diff.append(chirp_winner - chirp_loser)
|
# print(foldername)
|
||||||
freq_diff.append(freq_winner - freq_loser)
|
# all_fish_ids = np.unique(bh.chirps_ids)
|
||||||
|
# chirp_winner = len(bh.chirps[bh.chirps_ids == winner_fish_id])
|
||||||
fish1_id = all_fish_ids[0]
|
# chirp_loser = len(bh.chirps[bh.chirps_ids == loser_fish_id])
|
||||||
fish2_id = all_fish_ids[1]
|
|
||||||
print(winner_fish_id)
|
# freq_winner = np.nanmedian(bh.freq[bh.ident==winner_fish_id])
|
||||||
print(all_fish_ids)
|
# freq_loser = np.nanmedian(bh.freq[bh.ident==loser_fish_id])
|
||||||
|
|
||||||
fig, (ax1, ax2, ax3) = plt.subplots(1,3, figsize=(10,5))
|
# chirps_winner.append(chirp_winner)
|
||||||
|
# chirps_loser.append(chirp_loser)
|
||||||
|
|
||||||
|
# chirps_diffs.append(chirp_winner - chirp_loser)
|
||||||
|
# freq_diffs.append(freq_winner - freq_loser)
|
||||||
|
|
||||||
|
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(10, 5))
|
||||||
scatterwinner = 1.15
|
scatterwinner = 1.15
|
||||||
scatterloser = 1.85
|
scatterloser = 1.85
|
||||||
|
chirps_winner = np.asarray(chirps_winner)[~np.isnan(chirps_winner)]
|
||||||
|
chirps_loser = np.asarray(chirps_loser)[~np.isnan(chirps_loser)]
|
||||||
|
|
||||||
bplot1 = ax1.boxplot(chirps_winner, positions=[
|
bplot1 = ax1.boxplot(chirps_winner, positions=[
|
||||||
1], showfliers=False, patch_artist=True)
|
1], showfliers=False, patch_artist=True)
|
||||||
bplot2 = ax1.boxplot(chirps_loser, positions=[
|
bplot2 = ax1.boxplot(chirps_loser, positions=[
|
||||||
2], showfliers=False, patch_artist=True)
|
2], showfliers=False, patch_artist=True)
|
||||||
ax1.scatter(np.ones(len(chirps_winner))*scatterwinner, chirps_winner, color='r')
|
ax1.scatter(np.ones(len(chirps_winner)) *
|
||||||
ax1.scatter(np.ones(len(chirps_loser))*scatterloser, chirps_loser, color='r')
|
scatterwinner, chirps_winner, color='r')
|
||||||
|
ax1.scatter(np.ones(len(chirps_loser)) *
|
||||||
|
scatterloser, chirps_loser, color='r')
|
||||||
ax1.set_xticklabels(['winner', 'loser'])
|
ax1.set_xticklabels(['winner', 'loser'])
|
||||||
ax1.text(0.9, 0.9, f'n = {len(chirps_winner)}', transform=ax1.transAxes, color= ps.white)
|
ax1.text(0.9, 0.9, f'n = {len(chirps_winner)}',
|
||||||
|
transform=ax1.transAxes, color=ps.white)
|
||||||
|
|
||||||
for w, l in zip(chirps_winner, chirps_loser):
|
for w, l in zip(chirps_winner, chirps_loser):
|
||||||
ax1.plot([scatterwinner, scatterloser], [w, l], color='r', alpha=0.5, linewidth=0.5)
|
ax1.plot([scatterwinner, scatterloser], [w, l],
|
||||||
|
color='r', alpha=0.5, linewidth=0.5)
|
||||||
|
|
||||||
colors1 = ps.red
|
colors1 = ps.red
|
||||||
ps.set_boxplot_color(bplot1, colors1)
|
ps.set_boxplot_color(bplot1, colors1)
|
||||||
@ -139,11 +247,11 @@ def main(datapath: str):
|
|||||||
ps.set_boxplot_color(bplot2, colors1)
|
ps.set_boxplot_color(bplot2, colors1)
|
||||||
ax1.set_ylabel('Chirpscounts [n]')
|
ax1.set_ylabel('Chirpscounts [n]')
|
||||||
|
|
||||||
ax2.scatter(size_diff, chirps_diff, color='r')
|
ax2.scatter(size_diffs, size_chirps_diffs, color='r')
|
||||||
ax2.set_xlabel('Size difference [mm]')
|
ax2.set_xlabel('Size difference [mm]')
|
||||||
ax2.set_ylabel('Chirps difference [n]')
|
ax2.set_ylabel('Chirps difference [n]')
|
||||||
|
|
||||||
ax3.scatter(freq_diff, chirps_diff, color='r')
|
ax3.scatter(freq_diffs, freq_chirps_diffs, color='r')
|
||||||
ax3.set_xlabel('Frequency difference [Hz]')
|
ax3.set_xlabel('Frequency difference [Hz]')
|
||||||
ax3.set_yticklabels([])
|
ax3.set_yticklabels([])
|
||||||
ax3.set
|
ax3.set
|
||||||
|
Binary file not shown.
Loading…
Reference in New Issue
Block a user