implemented individual recording plots

This commit is contained in:
sprause 2023-01-24 15:49:17 +01:00
parent d3e77d20cc
commit babcf984e6

View File

@ -198,7 +198,8 @@ def main(datapath: str):
time_before_event = 30
time_after_event = 60
dt = 0.01
width = 1.5 # width of kernel, currently gaussian kernel
width = 1.5 # width of kernel for all recordings, currently gaussian kernel
recording_width = 1 # width of kernel for each recording
time = np.arange(-time_before_event, time_after_event, dt)
##### Chirps around events, all fish, all recordings #####
@ -220,11 +221,11 @@ def main(datapath: str):
physical_contacts = nrecording_physicals[i]
# Chirps around chasing onsets
_, centered_chasing_onset_chirps, _ = event_triggered_chirps(chasing_onsets, chirps, time_before_event, time_after_event, dt, width)
_, centered_chasing_onset_chirps, cc_chasing_onset_chirps = event_triggered_chirps(chasing_onsets, chirps, time_before_event, time_after_event, dt, recording_width)
# Chirps around chasing offsets
_, centered_chasing_offset_chirps, _ = event_triggered_chirps(chasing_offsets, chirps, time_before_event, time_after_event, dt, width)
_, centered_chasing_offset_chirps, cc_chasing_offset_chirps = event_triggered_chirps(chasing_offsets, chirps, time_before_event, time_after_event, dt, recording_width)
# Chirps around physical contacts
_, centered_physical_chirps, _ = event_triggered_chirps(physical_contacts, chirps, time_before_event, time_after_event, dt, width)
_, centered_physical_chirps, cc_physical_chirps = event_triggered_chirps(physical_contacts, chirps, time_before_event, time_after_event, dt, recording_width)
nrecording_centered_onset_chirps.append(centered_chasing_onset_chirps)
nrecording_centered_offset_chirps.append(centered_chasing_offset_chirps)
@ -235,20 +236,73 @@ def main(datapath: str):
nshuffled_offset_chirps = []
nshuffled_physical_chirps = []
for i in tqdm(range(nbootstrapping)):
for j in tqdm(range(nbootstrapping)):
# Calculate interchirp intervals; add first chirp timestamp in beginning to get equal lengths
interchirp_intervals = np.append(np.array([chirps[0]]), np.diff(chirps))
np.random.shuffle(interchirp_intervals)
shuffled_chirps = np.cumsum(interchirp_intervals)
# Shuffled chasing onset chirps
_, _, cc_shuffled_onset_chirps = event_triggered_chirps(chasing_onsets, shuffled_chirps, time_before_event, time_after_event, dt, width)
_, _, cc_shuffled_onset_chirps = event_triggered_chirps(chasing_onsets, shuffled_chirps, time_before_event, time_after_event, dt, recording_width)
nshuffled_onset_chirps.append(cc_shuffled_onset_chirps)
# Shuffled chasing offset chirps
_, _, cc_shuffled_offset_chirps = event_triggered_chirps(chasing_offsets, shuffled_chirps, time_before_event, time_after_event, dt, width)
_, _, cc_shuffled_offset_chirps = event_triggered_chirps(chasing_offsets, shuffled_chirps, time_before_event, time_after_event, dt, recording_width)
nshuffled_offset_chirps.append(cc_shuffled_offset_chirps)
# Shuffled physical contact chirps
_, _, cc_shuffled_physical_chirps = event_triggered_chirps(physical_contacts, shuffled_chirps, time_before_event, time_after_event, dt, width)
_, _, cc_shuffled_physical_chirps = event_triggered_chirps(physical_contacts, shuffled_chirps, time_before_event, time_after_event, dt, recording_width)
nshuffled_physical_chirps.append(cc_shuffled_physical_chirps)
rec_shuffled_q5_onset, rec_shuffled_median_onset, rec_shuffled_q95_onset = np.percentile(
nshuffled_onset_chirps, (5, 50, 95), axis=0)
rec_shuffled_q5_offset, rec_shuffled_median_offset, rec_shuffled_q95_offset = np.percentile(
nshuffled_offset_chirps, (5, 50, 95), axis=0)
rec_shuffled_q5_physical, rec_shuffled_median_physical, rec_shuffled_q95_physical = np.percentile(
nshuffled_physical_chirps, (5, 50, 95), axis=0)
#### Recording plots ####
fig, ax = plt.subplots(1, 3, figsize=(28*ps.cm, 16*ps.cm, ), constrained_layout=True, sharey='all')
ax[0].set_xlabel('Time[s]')
# Plot chasing onsets
ax[0].set_ylabel('Chirp rate [Hz]')
ax[0].plot(time, cc_chasing_onset_chirps, color=ps.yellow, zorder=2)
ax0 = ax[0].twinx()
ax0.eventplot(centered_chasing_onset_chirps, linelengths=0.2, colors=ps.gray, alpha=0.25, zorder=1)
ax0.vlines(0, 0, 1.5, ps.white, 'dashed')
ax[0].set_zorder(ax0.get_zorder()+1)
ax[0].patch.set_visible(False)
ax0.set_yticklabels([])
ax0.set_yticks([])
ax[0].fill_between(time, rec_shuffled_q5_onset, rec_shuffled_q95_onset, color=ps.gray, alpha=0.5)
ax[0].plot(time, rec_shuffled_median_onset, color=ps.black)
# Plot chasing offets
ax[1].set_xlabel('Time[s]')
ax[1].plot(time, cc_chasing_offset_chirps, color=ps.orange, zorder=2)
ax1 = ax[1].twinx()
ax1.eventplot(centered_chasing_offset_chirps, linelengths=0.2, colors=ps.gray, alpha=0.25, zorder=1)
ax1.vlines(0, 0, 1.5, ps.white, 'dashed')
ax[1].set_zorder(ax1.get_zorder()+1)
ax[1].patch.set_visible(False)
ax1.set_yticklabels([])
ax1.set_yticks([])
ax[1].fill_between(time, rec_shuffled_q5_offset, rec_shuffled_q95_offset, color=ps.gray, alpha=0.5)
ax[1].plot(time, rec_shuffled_median_offset, color=ps.black)
# Plot physical contacts
ax[2].set_xlabel('Time[s]')
ax[2].plot(time, cc_physical_chirps, color=ps.maroon, zorder=2)
ax2 = ax[2].twinx()
ax2.eventplot(centered_physical_chirps, linelengths=0.2, colors=ps.gray, alpha=0.25, zorder=1)
ax2.vlines(0, 0, 1.5, ps.white, 'dashed')
ax[2].set_zorder(ax2.get_zorder()+1)
ax[2].patch.set_visible(False)
ax2.set_yticklabels([])
ax2.set_yticks([])
ax[2].fill_between(time, rec_shuffled_q5_physical, rec_shuffled_q95_physical, color=ps.gray, alpha=0.5)
ax[2].plot(time, rec_shuffled_median_physical, ps.black)
fig.suptitle(f'Recording: {i}')
plt.show()
# plt.close()
nrecording_shuffled_convolved_onset_chirps.append(nshuffled_onset_chirps)
nrecording_shuffled_convolved_offset_chirps.append(nshuffled_offset_chirps)
@ -290,45 +344,49 @@ def main(datapath: str):
fig, ax = plt.subplots(1, 3, figsize=(28*ps.cm, 16*ps.cm, ), constrained_layout=True, sharey='all')
# offsets = np.arange(1,28,1)
ax[0].set_xlabel('Time[s]')
# Plot chasing onsets
ax[0].set_ylabel('Chirp rate [Hz]')
ax[0].plot(time, all_onset_chirps_convolved, color=ps.yellow, zorder=2)
ax0 = ax[0].twinx()
nrecording_centered_onset_chirps = np.asarray(nrecording_centered_onset_chirps, dtype=object)
ax0.eventplot(np.array(nrecording_centered_onset_chirps), linelengths=0.5, colors=ps.gray, alpha=0.25, zorder=1)
ax0.vlines(0, 0, 1.5, ps.black, 'dashed')
ax0.vlines(0, 0, 1.5, ps.white, 'dashed')
ax[0].set_zorder(ax0.get_zorder()+1)
ax[0].patch.set_visible(False)
ax0.set_yticklabels([])
ax0.set_yticks([])
ax[0].fill_between(time, shuffled_q5_onset, shuffled_q95_onset, color=ps.gray, alpha=0.5)
ax[0].plot(time, shuffled_median_onset, color=ps.black)
# Plot chasing offets
ax[1].set_xlabel('Time[s]')
ax[1].plot(time, all_offset_chirps_convolved, color=ps.orange, zorder=2)
ax1 = ax[1].twinx()
nrecording_centered_offset_chirps = np.asarray(nrecording_centered_offset_chirps, dtype=object)
ax1.eventplot(np.array(nrecording_centered_offset_chirps), linelengths=0.5, colors=ps.gray, alpha=0.25, zorder=1)
ax1.vlines(0, 0, 1.5, ps.black, 'dashed')
ax1.vlines(0, 0, 1.5, ps.white, 'dashed')
ax[1].set_zorder(ax1.get_zorder()+1)
ax[1].patch.set_visible(False)
ax1.set_yticklabels([])
ax1.set_yticks([])
ax[1].fill_between(time, shuffled_q5_offset, shuffled_q95_offset, color=ps.gray, alpha=0.5)
ax[1].plot(time, shuffled_median_offset, color=ps.black)
# Plot physical contacts
ax[2].set_xlabel('Time[s]')
ax[2].plot(time, all_physical_chirps_convolved, color=ps.maroon, zorder=2)
ax2 = ax[2].twinx()
nrecording_centered_physical_chirps = np.asarray(nrecording_centered_physical_chirps, dtype=object)
ax2.eventplot(np.array(nrecording_centered_physical_chirps), linelengths=0.5, colors=ps.gray, alpha=0.25, zorder=1)
ax2.vlines(0, 0, 1.5, ps.black, 'dashed')
ax2.vlines(0, 0, 1.5, ps.white, 'dashed')
ax[2].set_zorder(ax2.get_zorder()+1)
ax[2].patch.set_visible(False)
ax2.set_yticklabels([])
ax2.set_yticks([])
ax[2].fill_between(time, shuffled_q5_physical, shuffled_q95_physical, color=ps.gray, alpha=0.5)
ax[2].plot(time, shuffled_median_physical, ps.black)
fig.suptitle('All recordings')
plt.show()
# plt.close()
@ -351,7 +409,7 @@ def main(datapath: str):
# fish2 = chirps[chirps_fish_ids == fish_ids[1]]
# fish = [len(fish1), len(fish2)]
# Concolution over all recordings
# Convolution over all recordings
# Rasterplot for each recording