Merge branch 'master' into eventtriggeredchirps

This commit is contained in:
sprause 2023-01-23 18:06:58 +01:00
commit b44a346097
4 changed files with 279 additions and 30 deletions

View File

@ -130,7 +130,7 @@ class PlotBuffer:
data_oi,
self.data.raw_rate,
self.t0 - 5,
[np.max(self.frequency) - 200, np.max(self.frequency) + 200]
[np.min(self.frequency) - 200, np.max(self.frequency) + 200]
)
for track_id in self.data.ids:
@ -145,14 +145,15 @@ class PlotBuffer:
# get tracked frequencies and their times
f = self.data.freq[window_idx]
t = self.data.time[
self.data.idx[self.data.ident == self.track_id]]
tmask = (t >= t0_track) & (t <= (t0_track + dt_track))
# t = self.data.time[
# self.data.idx[self.data.ident == self.track_id]]
# tmask = (t >= t0_track) & (t <= (t0_track + dt_track))
t = self.data.time[self.data.idx[window_idx]]
if track_id == self.track_id:
ax0.plot(t[tmask]-self.t0_old, f, lw=lw,
ax0.plot(t-self.t0_old, f, lw=lw,
zorder=10, color=ps.gblue1)
else:
ax0.plot(t[tmask]-self.t0_old, f, lw=lw,
ax0.plot(t-self.t0_old, f, lw=lw,
zorder=10, color=ps.gray, alpha=0.5)
ax0.fill_between(
@ -472,7 +473,9 @@ def find_searchband(
)
# search window in boolean
search_window_bool = np.ones_like(len(search_window), dtype=bool)
bool_lower = np.ones_like(search_window, dtype=bool)
bool_upper = np.ones_like(search_window, dtype=bool)
search_window_bool = np.ones_like(search_window, dtype=bool)
# make seperate arrays from the qartiles
q25 = np.asarray([i[0] for i in frequency_percentiles])
@ -492,11 +495,10 @@ def find_searchband(
q25_temp = q25[percentiles_ids == check_track_id]
q75_temp = q75[percentiles_ids == check_track_id]
print(q25_temp, q75_temp)
search_window_bool[
(search_window > q25_temp) & (search_window < q75_temp)
] = False
bool_lower[search_window > q25_temp - config.search_res] = False
bool_upper[search_window < q75_temp + config.search_res] = False
search_window_bool[(bool_lower == False) &
(bool_upper == False)] = False
# find gaps in search window
search_window_indices = np.arange(len(search_window))
@ -552,7 +554,7 @@ def find_searchband(
return config.default_search_freq
def main(datapath: str, plot: str) -> None:
def chirpdetection(datapath: str, plot: str) -> None:
assert plot in [
"save",
@ -561,6 +563,7 @@ def main(datapath: str, plot: str) -> None:
], "plot must be 'save', 'show' or 'false'"
# load raw file
print('datapath', datapath)
data = LoadData(datapath)
# load config file
@ -589,8 +592,8 @@ def main(datapath: str, plot: str) -> None:
raw_time = np.arange(data.raw.shape[0]) / data.raw_rate
# good chirp times for data: 2022-06-02-10_00
# window_start_index = (3 * 60 * 60 + 6 * 60 + 43.5 + 5) * data.raw_rate
# window_duration_index = 60 * data.raw_rate
window_start_index = (3 * 60 * 60 + 6 * 60 + 43.5 + 5) * data.raw_rate
window_duration_index = 60 * data.raw_rate
# t0 = 0
# dt = data.raw.shape[0]
@ -651,14 +654,14 @@ def main(datapath: str, plot: str) -> None:
# approximate sampling rate to compute expected durations if there
# is data available for this time window for this fish id
track_samplerate = np.mean(1 / np.diff(data.time))
expected_duration = (
(window_start_seconds + window_duration_seconds)
- window_start_seconds
) * track_samplerate
# track_samplerate = np.mean(1 / np.diff(data.time))
# expected_duration = (
# (window_start_seconds + window_duration_seconds)
# - window_start_seconds
# ) * track_samplerate
# check if tracked data available in this window
if len(current_frequencies) < expected_duration / 2:
if len(current_frequencies) < 3:
logger.warning(
f"Track {track_id} has no data in window {st}, skipping."
)
@ -918,11 +921,9 @@ def main(datapath: str, plot: str) -> None:
multielectrode_chirps.append(singleelectrode_chirps)
# only initialize the plotting buffer if chirps are detected
chirp_detected = (
(el == config.number_electrodes - 1)
& (len(singleelectrode_chirps) > 0)
& (plot in ["show", "save"])
)
chirp_detected = (el == (config.number_electrodes - 1)
& (plot in ["show", "save"])
)
if chirp_detected:
@ -987,11 +988,12 @@ def main(datapath: str, plot: str) -> None:
# if chirps are detected and the plot flag is set, plot the
# chirps, otheswise try to delete the buffer if it exists
if len(multielectrode_chirps_validated) > 0:
if ((len(multielectrode_chirps_validated) > 0) & (plot in ["show", "save"])):
try:
buffer.plot_buffer(multielectrode_chirps_validated, plot)
del buffer
except NameError:
pass
embed()
else:
try:
del buffer
@ -1049,4 +1051,4 @@ if __name__ == "__main__":
datapath = "../data/2022-06-02-10_00/"
# datapath = "/home/weygoldt/Data/uni/efishdata/2016-colombia/fishgrid/2016-04-09-22_25/"
# datapath = "/home/weygoldt/Data/uni/chirpdetection/GP2023_chirp_detection/data/mount_data/2020-03-13-10_00/"
main(datapath, plot="save")
chirpdetection(datapath, plot="show")

View File

@ -3,7 +3,7 @@ dataroot: "../data/"
outputdir: "../output/"
# Duration and overlap of the analysis window in seconds
window: 10
window: 5
overlap: 1
edge: 0.25

44
code/extract_chirps.py Normal file
View File

@ -0,0 +1,44 @@
import os
import numpy as np
from chirpdetection import chirpdetection
from IPython import embed
def main(datapaths):
for path in datapaths:
chirpdetection(path, plot='show')
if __name__ == '__main__':
dataroot = '../data/mount_data/'
datasets = sorted([name for name in os.listdir(dataroot) if os.path.isdir(
os.path.join(dataroot, name))])
valid_datasets = []
for dataset in datasets:
path = os.path.join(dataroot, dataset)
csv_name = '-'.join(dataset.split('-')[:3]) + '.csv'
if os.path.exists(os.path.join(path, csv_name)) is False:
continue
if os.path.exists(os.path.join(path, 'ident_v.npy')) is False:
continue
ident = np.load(os.path.join(path, 'ident_v.npy'))
number_of_fish = len(np.unique(ident[~np.isnan(ident)]))
if number_of_fish != 2:
continue
valid_datasets.append(dataset)
datapaths = [os.path.join(dataroot, dataset) +
'/' for dataset in valid_datasets]
embed()
main(datapaths[3])

203
code/plot_event_timeline.py Normal file
View File

@ -0,0 +1,203 @@
import numpy as np
import os
import numpy as np
import matplotlib.pyplot as plt
from thunderfish.powerspectrum import decibel
from IPython import embed
from pandas import read_csv
from modules.logger import makeLogger
from modules.plotstyle import PlotStyle
ps = PlotStyle()
logger = makeLogger(__name__)
class Behavior:
"""Load behavior data from csv file as class attributes
Attributes
----------
behavior: 0: chasing onset, 1: chasing offset, 2: physical contact
behavior_type:
behavioral_category:
comment_start:
comment_stop:
dataframe: pandas dataframe with all the data
duration_s:
media_file:
observation_date:
observation_id:
start_s: start time of the event in seconds
stop_s: stop time of the event in seconds
total_length:
"""
def __init__(self, folder_path: str) -> None:
LED_on_time_BORIS = np.load(os.path.join(folder_path, 'LED_on_time.npy'), allow_pickle=True)
csv_filename = [f for f in os.listdir(folder_path) if f.endswith('.csv')][0]
logger.info(f'CSV file: {csv_filename}')
self.dataframe = read_csv(os.path.join(folder_path, csv_filename))
self.chirps = np.load(os.path.join(folder_path, 'chirps.npy'), allow_pickle=True)
self.chirps_ids = np.load(os.path.join(folder_path, 'chirps_ids.npy'), allow_pickle=True)
self.ident = np.load(os.path.join(folder_path, 'ident_v.npy'), allow_pickle=True)
self.idx = np.load(os.path.join(folder_path, 'idx_v.npy'), allow_pickle=True)
self.freq = np.load(os.path.join(folder_path, 'fund_v.npy'), allow_pickle=True)
self.time = np.load(os.path.join(folder_path, "times.npy"), allow_pickle=True)
self.spec = np.load(os.path.join(folder_path, "spec.npy"), allow_pickle=True)
for k, key in enumerate(self.dataframe.keys()):
key = key.lower()
if ' ' in key:
key = key.replace(' ', '_')
if '(' in key:
key = key.replace('(', '')
key = key.replace(')', '')
setattr(self, key, np.array(self.dataframe[self.dataframe.keys()[k]]))
last_LED_t_BORIS = LED_on_time_BORIS[-1]
real_time_range = self.time[-1] - self.time[0]
factor = 1.034141
shift = last_LED_t_BORIS - real_time_range * factor
self.start_s = (self.start_s - shift) / factor
self.stop_s = (self.stop_s - shift) / factor
def correct_chasing_events(
category: np.ndarray,
timestamps: np.ndarray
) -> tuple[np.ndarray, np.ndarray]:
onset_ids = np.arange(
len(category))[category == 0]
offset_ids = np.arange(
len(category))[category == 1]
# Check whether on- or offset is longer and calculate length difference
if len(onset_ids) > len(offset_ids):
len_diff = len(onset_ids) - len(offset_ids)
longer_array = onset_ids
shorter_array = offset_ids
logger.info(f'Onsets are greater than offsets by {len_diff}')
elif len(onset_ids) < len(offset_ids):
len_diff = len(offset_ids) - len(onset_ids)
longer_array = offset_ids
shorter_array = onset_ids
logger.info(f'Offsets are greater than offsets by {len_diff}')
elif len(onset_ids) == len(offset_ids):
logger.info('Chasing events are equal')
return category, timestamps
# Correct the wrong chasing events; delete double events
wrong_ids = []
for i in range(len(longer_array)-(len_diff+1)):
if (shorter_array[i] > longer_array[i]) & (shorter_array[i] < longer_array[i+1]):
pass
else:
wrong_ids.append(longer_array[i])
longer_array = np.delete(longer_array, i)
category = np.delete(
category, wrong_ids)
timestamps = np.delete(
timestamps, wrong_ids)
return category, timestamps
def main(datapath: str):
# behabvior is pandas dataframe with all the data
bh = Behavior(datapath)
# chirps are not sorted in time (presumably due to prior groupings)
# get and sort chirps and corresponding fish_ids of the chirps
chirps = bh.chirps[np.argsort(bh.chirps)]
chirps_fish_ids = bh.chirps_ids[np.argsort(bh.chirps)]
category = bh.behavior
timestamps = bh.start_s
# Correct for doubles in chasing on- and offsets to get the right on-/offset pairs
# Get rid of tracking faults (two onsets or two offsets after another)
category, timestamps = correct_chasing_events(category, timestamps)
# split categories
chasing_onset = (timestamps[category == 0]/ 60) /60
chasing_offset = (timestamps[category == 1]/ 60) /60
physical_contact = (timestamps[category == 2] / 60) /60
all_fish_ids = np.unique(chirps_fish_ids)
fish1_id = all_fish_ids[0]
fish2_id = all_fish_ids[1]
# Associate chirps to inidividual fish
fish1 = (chirps[chirps_fish_ids == fish1_id] / 60) /60
fish2 = (chirps[chirps_fish_ids == fish2_id] / 60) /60
fish1_color = ps.red
fish2_color = ps.orange
fig, ax = plt.subplots(4, 1, figsize=(10, 5), height_ratios=[0.5, 0.5, 0.5, 6], sharex=True)
# marker size
s = 200
ax[0].scatter(physical_contact, np.ones(len(physical_contact)), color='firebrick', marker='|', s=s)
ax[1].scatter(chasing_onset, np.ones(len(chasing_onset)), color='green', marker='|', s=s )
ax[2].scatter(fish1, np.ones(len(fish1))-0.25, color=fish1_color, marker='|', s=s)
ax[2].scatter(fish2, np.zeros(len(fish2))+0.25, color=fish2_color, marker='|', s=s)
freq_temp = bh.freq[bh.ident==fish1_id]
time_temp = bh.time[bh.idx[bh.ident==fish1_id]]
ax[3].plot((time_temp/ 60) /60, freq_temp, color=fish1_color)
freq_temp = bh.freq[bh.ident==fish2_id]
time_temp = bh.time[bh.idx[bh.ident==fish2_id]]
ax[3].plot((time_temp/ 60) /60, freq_temp, color=fish2_color)
#ax[3].imshow(decibel(bh.spec), extent=[bh.time[0]/60/60, bh.time[-1]/60/60, 0, 2000], aspect='auto', origin='lower')
# Hide grid lines
ax[0].grid(False)
ax[0].set_frame_on(False)
ax[0].set_xticks([])
ax[0].set_yticks([])
ps.hide_ax(ax[0])
ax[1].grid(False)
ax[1].set_frame_on(False)
ax[1].set_xticks([])
ax[1].set_yticks([])
ps.hide_ax(ax[1])
ax[2].grid(False)
ax[2].set_frame_on(False)
ax[2].set_yticks([])
ax[2].set_xticks([])
ps.hide_ax(ax[2])
ax[3].axvspan(0, 3, 0, 5, facecolor='grey', alpha=0.5)
ax[3].set_xticks(np.arange(0, 6.1, 0.5))
labelpad = 40
ax[0].set_ylabel('Physical contact', rotation=0, labelpad=labelpad)
ax[1].set_ylabel('Chasing events', rotation=0, labelpad=labelpad)
ax[2].set_ylabel('Chirps', rotation=0, labelpad=labelpad)
ax[3].set_ylabel('EODf')
ax[3].set_xlabel('Time [h]')
plt.show()
embed()
# plot chirps
if __name__ == '__main__':
# Path to the data
datapath = '../data/mount_data/2020-05-13-10_00/'
main(datapath)