new introplot

This commit is contained in:
weygoldt 2023-01-26 12:45:14 +01:00
parent 449bc130a0
commit b0447b8ab3
3 changed files with 328 additions and 270 deletions

View File

@ -17,7 +17,7 @@ def main():
data = LoadData(datapath)
# good chirp times for data: 2022-06-02-10_00
window_start_seconds = 3 * 60 * 60 + 6 * 60 + 43.5 + 9 + 6.25
window_start_seconds = 3 * 60 * 60 + 6 * 60 + 43.5 + 9 + 6.24
window_start_index = window_start_seconds * data.raw_rate
window_duration_seconds = 0.2
window_duration_index = window_duration_seconds * data.raw_rate
@ -27,8 +27,8 @@ def main():
raw = data.raw[window_start_index:window_start_index +
window_duration_index, 10]
fig, (ax1, ax2, ax3) = plt.subplots(
3, 1, figsize=(12 * ps.cm, 10*ps.cm), sharex=True, sharey=True)
fig, ax = plt.subplots(
1, 1, figsize=(14 * ps.cm, 6*ps.cm), sharex=True, sharey=True)
# plot instantaneous frequency
filtered1 = bandpass_filter(
@ -41,13 +41,14 @@ def main():
freqtime2, freq2 = instantaneous_frequency(
filtered2, data.raw_rate, smoothing_window=3)
ax1.plot(freqtime1*timescaler, freq1, color=ps.red,
lw=2, label=f"fish 1, {np.median(freq1):.0f} Hz")
ax1.plot(freqtime2*timescaler, freq2, color=ps.orange,
lw=2, label=f"fish 2, {np.median(freq2):.0f} Hz")
ax1.legend(bbox_to_anchor=(0, 1.02, 1, 0.2), loc="lower center",
mode="normal", borderaxespad=0, ncol=2)
ps.hide_xax(ax1)
ax.plot(freqtime1*timescaler, freq1, color=ps.gblue1,
lw=2, label="fish 1")
ax.plot(freqtime2*timescaler, freq2, color=ps.gblue2,
lw=2, label="fish 2")
ax.legend(bbox_to_anchor=(0, 1.02, 1, 0.2), loc="lower center",
mode="normal", borderaxespad=0, ncol=2)
# ax.legend(bbox_to_anchor=(1.04, 1), borderaxespad=0)
# # ps.hide_xax(ax1)
# plot fine spectrogram
spec_power, spec_freqs, spec_times = spectrogram(
@ -57,11 +58,11 @@ def main():
overlap_frac=0.2,
)
ylims = [300, 1200]
ylims = [300, 1300]
fmask = np.zeros(spec_freqs.shape, dtype=bool)
fmask[(spec_freqs > ylims[0]) & (spec_freqs < ylims[1])] = True
ax2.imshow(
ax.imshow(
decibel(spec_power[fmask, :]),
extent=[
spec_times[0]*timescaler,
@ -73,45 +74,47 @@ def main():
origin="lower",
interpolation="gaussian",
alpha=1,
vmin=-100,
vmax=-80,
)
ps.hide_xax(ax2)
# plot coarse spectrogram
spec_power, spec_freqs, spec_times = spectrogram(
raw,
ratetime=data.raw_rate,
freq_resolution=10,
overlap_frac=0.3,
)
fmask = np.zeros(spec_freqs.shape, dtype=bool)
fmask[(spec_freqs > ylims[0]) & (spec_freqs < ylims[1])] = True
ax3.imshow(
decibel(spec_power[fmask, :]),
extent=[
spec_times[0]*timescaler,
spec_times[-1]*timescaler,
spec_freqs[fmask][0],
spec_freqs[fmask][-1],
],
aspect="auto",
origin="lower",
interpolation="gaussian",
alpha=1,
)
# ps.hide_xax(ax3)
ax3.set_xlabel("time [ms]")
ax2.set_ylabel("frequency [Hz]")
ax1.set_yticks(np.arange(400, 1201, 400))
ax1.spines.left.set_bounds((400, 1200))
ax2.set_yticks(np.arange(400, 1201, 400))
ax2.spines.left.set_bounds((400, 1200))
ax3.set_yticks(np.arange(400, 1201, 400))
ax3.spines.left.set_bounds((400, 1200))
plt.subplots_adjust(left=0.17, right=0.98, top=0.9,
bottom=0.14, hspace=0.35)
# ps.hide_xax(ax2)
# # plot coarse spectrogram
# spec_power, spec_freqs, spec_times = spectrogram(
# raw,
# ratetime=data.raw_rate,
# freq_resolution=10,
# overlap_frac=0.3,
# )
# fmask = np.zeros(spec_freqs.shape, dtype=bool)
# fmask[(spec_freqs > ylims[0]) & (spec_freqs < ylims[1])] = True
# ax3.imshow(
# decibel(spec_power[fmask, :]),
# extent=[
# spec_times[0]*timescaler,
# spec_times[-1]*timescaler,
# spec_freqs[fmask][0],
# spec_freqs[fmask][-1],
# ],
# aspect="auto",
# origin="lower",
# interpolation="gaussian",
# alpha=1,
# )
# # ps.hide_xax(ax3)
ax.set_xlabel("time [ms]")
ax.set_ylabel("frequency [Hz]")
# ax.set_yticks(np.arange(400, 1201, 400))
# ax.spines.left.set_bounds((400, 1200))
# ax2.set_yticks(np.arange(400, 1201, 400))
# ax2.spines.left.set_bounds((400, 1200))
# ax3.set_yticks(np.arange(400, 1201, 400))
# ax3.spines.left.set_bounds((400, 1200))
plt.subplots_adjust(left=0.17, right=0.98, top=0.87,
bottom=0.24, hspace=0.35)
plt.savefig('../poster/figs/introplot.pdf')
plt.show()

View File

@ -1,18 +1,18 @@
from extract_chirps import get_valid_datasets
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from tqdm import tqdm
from IPython import embed
from pandas import read_csv
from modules.logger import makeLogger
from modules.datahandling import flatten, causal_kde1d, acausal_kde1d
from modules.plotstyle import PlotStyle
from modules.behaviour_handling import (
Behavior, correct_chasing_events, center_chirps)
from modules.plotstyle import PlotStyle
from modules.datahandling import flatten, causal_kde1d, acausal_kde1d
from modules.logger import makeLogger
from pandas import read_csv
from IPython import embed
from tqdm import tqdm
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import os
from extract_chirps import get_valid_datasets
logger = makeLogger(__name__)
ps = PlotStyle()
@ -23,16 +23,16 @@ def bootstrap(data, nresamples, kde_time, kernel_width, event_times, time_before
bootstrapped_kdes = []
data = data[data <= 3*60*60] # only night time
# diff_data = np.diff(np.sort(data), prepend=0)
diff_data = np.diff(np.sort(data), prepend=0)
# if len(data) != 0:
# mean_chirprate = (len(data) - 1) / (data[-1] - data[0])
for i in tqdm(range(nresamples)):
# np.random.shuffle(diff_data)
np.random.shuffle(diff_data)
# bootstrapped_data = np.cumsum(diff_data)
bootstrapped_data = data + np.random.randn(len(data)) * 10
bootstrapped_data = np.cumsum(diff_data)
# bootstrapped_data = data + np.random.randn(len(data)) * 10
bootstrap_data_centered = center_chirps(
bootstrapped_data, event_times, time_before, time_after)
@ -40,8 +40,8 @@ def bootstrap(data, nresamples, kde_time, kernel_width, event_times, time_before
bootstrapped_kde = acausal_kde1d(
bootstrap_data_centered, time=kde_time, width=kernel_width)
# bootstrapped_kdes = list(np.asarray(
# bootstrapped_kdes) / len(event_times))
bootstrapped_kde = list(np.asarray(
bootstrapped_kde) / len(event_times))
bootstrapped_kdes.append(bootstrapped_kde)
@ -58,20 +58,20 @@ def jackknife(data, nresamples, subsetsize, kde_time, kernel_width, event_times,
for i in tqdm(range(nresamples)):
bootstrapped_data = np.random.sample(data, subsetsize, replace=False)
jackknifed_data = np.random.choice(data, subsetsize, replace=False)
bootstrapped_data = np.cumsum(diff_data)
jackknifed_data = np.cumsum(diff_data)
bootstrap_data_centered = center_chirps(
bootstrapped_data, event_times, time_before, time_after)
jackknifed_data_centered = center_chirps(
jackknifed_data, event_times, time_before, time_after)
bootstrapped_kde = acausal_kde1d(
bootstrap_data_centered, time=kde_time, width=kernel_width)
jackknifed_kde = acausal_kde1d(
jackknifed_data_centered, time=kde_time, width=kernel_width)
# bootstrapped_kdes = list(np.asarray(
# bootstrapped_kdes) / len(event_times))
jackknifed_kde = list(np.asarray(
jackknifed_kde) / len(event_times))
jackknife_kdes.append(bootstrapped_kde)
jackknife_kdes.append(jackknifed_kde)
return jackknife_kdes
@ -102,14 +102,14 @@ def get_chirp_winner_loser(folder_name, Behavior, order_meta_df):
def main(dataroot):
foldernames, _ = get_valid_datasets(dataroot)
foldernames, _ = np.asarray(get_valid_datasets(dataroot))
plot_all = True
time_before = 60
time_after = 60
time_before = 90
time_after = 90
dt = 0.001
kernel_width = 1
kernel_width = 2
kde_time = np.arange(-time_before, time_after, dt)
nbootstraps = 2
nbootstraps = 50
meta_path = (
'/').join(foldernames[0].split('/')[:-2]) + '/order_meta.csv'
@ -135,9 +135,19 @@ def main(dataroot):
onset_count = 0
offset_count = 0
physical_count = 0
# winner_count = 0
# loser_count = 0
# winner_onset_chirpcount = 0
# winner_offset_chirpcount = 0
# winner_physical_chirpcount = 0
# loser_onset_chirpcount = 0
# loser_offset_chirpcount = 0
# loser_physical_chirpcount = 0
fig, ax = plt.subplots(1, 2, figsize=(
14 * ps.cm, 7*ps.cm), sharey=True, sharex=True)
# Iterate over all recordings and save chirp- and event-timestamps
for folder in tqdm(foldernames):
good_recs = np.asarray([0, 15])
for i, folder in tqdm(enumerate(foldernames[good_recs])):
foldername = folder.split('/')[-2]
# logger.info('Loading data from folder: {}'.format(foldername))
@ -153,9 +163,10 @@ def main(dataroot):
timestamps = timestamps[timestamps < 3*60*60] # only night time
winner, loser = get_chirp_winner_loser(folder, bh, meta)
if winner is None:
continue
# winner_count += len(winner)
# loser_count += len(loser)
onsets = (timestamps[category == 0])
offsets = (timestamps[category == 1])
@ -179,42 +190,48 @@ def main(dataroot):
loser_physicals.append(center_chirps(
loser, physicals, time_before, time_after))
# winner_onset_chirpcount += len(winner_onsets[-1])
# winner_offset_chirpcount += len(winner_offsets[-1])
# winner_physical_chirpcount += len(winner_physicals[-1])
# loser_onset_chirpcount += len(loser_onsets[-1])
# loser_offset_chirpcount += len(loser_offsets[-1])
# loser_physical_chirpcount += len(loser_physicals[-1])
# bootstrap
# chirps = [winner, winner, winner, loser, loser, loser]
winner_onsets_boot.append(bootstrap(
winner,
nresamples=nbootstraps,
kde_time=kde_time,
kernel_width=kernel_width,
event_times=onsets,
time_before=time_before,
time_after=time_after))
winner_offsets_boot.append(bootstrap(
winner,
nresamples=nbootstraps,
kde_time=kde_time,
kernel_width=kernel_width,
event_times=offsets,
time_before=time_before,
time_after=time_after))
winner_physicals_boot.append(bootstrap(
winner,
nresamples=nbootstraps,
kde_time=kde_time,
kernel_width=kernel_width,
event_times=physicals,
time_before=time_before,
time_after=time_after))
loser_onsets_boot.append(bootstrap(
loser,
nresamples=nbootstraps,
kde_time=kde_time,
kernel_width=kernel_width,
event_times=onsets,
time_before=time_before,
time_after=time_after))
# winner_onsets_boot.append(bootstrap(
# winner,
# nresamples=nbootstraps,
# kde_time=kde_time,
# kernel_width=kernel_width,
# event_times=onsets,
# time_before=time_before,
# time_after=time_after))
# winner_offsets_boot.append(bootstrap(
# winner,
# nresamples=nbootstraps,
# kde_time=kde_time,
# kernel_width=kernel_width,
# event_times=offsets,
# time_before=time_before,
# time_after=time_after))
# winner_physicals_boot.append(bootstrap(
# winner,
# nresamples=nbootstraps,
# kde_time=kde_time,
# kernel_width=kernel_width,
# event_times=physicals,
# time_before=time_before,
# time_after=time_after))
# loser_onsets_boot.append(bootstrap(
# loser,
# nresamples=nbootstraps,
# kde_time=kde_time,
# kernel_width=kernel_width,
# event_times=onsets,
# time_before=time_before,
# time_after=time_after))
loser_offsets_boot.append(bootstrap(
loser,
nresamples=nbootstraps,
@ -223,61 +240,99 @@ def main(dataroot):
event_times=offsets,
time_before=time_before,
time_after=time_after))
loser_physicals_boot.append(bootstrap(
# loser_physicals_boot.append(bootstrap(
# loser,
# nresamples=nbootstraps,
# kde_time=kde_time,
# kernel_width=kernel_width,
# event_times=physicals,
# time_before=time_before,
# time_after=time_after))
loser_offsets_jackknife = jackknife(
loser,
nresamples=nbootstraps,
subsetsize=0.5,
kde_time=kde_time,
kernel_width=kernel_width,
event_times=physicals,
event_times=offsets,
time_before=time_before,
time_after=time_after))
time_after=time_after)
if plot_all:
winner_onsets_conv = acausal_kde1d(
winner_onsets[-1], kde_time, kernel_width)
winner_offsets_conv = acausal_kde1d(
winner_offsets[-1], kde_time, kernel_width)
winner_physicals_conv = acausal_kde1d(
winner_physicals[-1], kde_time, kernel_width)
# winner_onsets_conv = acausal_kde1d(
# winner_onsets[-1], kde_time, kernel_width)
# winner_offsets_conv = acausal_kde1d(
# winner_offsets[-1], kde_time, kernel_width)
# winner_physicals_conv = acausal_kde1d(
# winner_physicals[-1], kde_time, kernel_width)
loser_onsets_conv = acausal_kde1d(
loser_onsets[-1], kde_time, kernel_width)
# loser_onsets_conv = acausal_kde1d(
# loser_onsets[-1], kde_time, kernel_width)
loser_offsets_conv = acausal_kde1d(
loser_offsets[-1], kde_time, kernel_width)
loser_physicals_conv = acausal_kde1d(
loser_physicals[-1], kde_time, kernel_width)
fig, ax = plt.subplots(2, 3, figsize=(
21*ps.cm, 10*ps.cm), sharey=True, sharex=True)
ax[0, 0].set_title(
f"{foldername}, onsets {len(onsets)}, offsets {len(offsets)}, physicals {len(physicals)},winner {len(winner)}, looser {len(loser)} , onsets")
ax[0, 0].plot(kde_time, winner_onsets_conv/len(onsets))
ax[0, 1].plot(kde_time, winner_offsets_conv/len(offsets))
ax[0, 2].plot(kde_time, winner_physicals_conv/len(physicals))
ax[1, 0].plot(kde_time, loser_onsets_conv/len(onsets))
ax[1, 1].plot(kde_time, loser_offsets_conv/len(offsets))
ax[1, 2].plot(kde_time, loser_physicals_conv/len(physicals))
# loser_physicals_conv = acausal_kde1d(
# loser_physicals[-1], kde_time, kernel_width)
ax[i].plot(kde_time, loser_offsets_conv/len(offsets))
ax[i].fill_between(
kde_time,
np.percentile(loser_offsets_boot[-1], 5, axis=0),
np.percentile(loser_offsets_boot[-1], 95, axis=0),
color=ps.gray,
alpha=0.5)
ax[i].plot(kde_time, np.median(loser_offsets_boot[-1], axis=0),
color=ps.black, linewidth=2)
ax[i].fill_between(
kde_time,
np.percentile(loser_offsets_jackknife, 5, axis=0),
np.percentile(loser_offsets_jackknife, 95, axis=0),
color=ps.blue,
alpha=0.5)
ax[i].plot(kde_time, np.median(loser_offsets_jackknife, axis=0),
color=ps.white, linewidth=2)
ax[i].set_xlim(-60, 60)
embed()
# fig, ax = plt.subplots(2, 3, figsize=(
# 21*ps.cm, 10*ps.cm), sharey=True, sharex=True)
# ax[0, 0].set_title(
# f"{foldername}, onsets {len(onsets)}, offsets {len(offsets)}, physicals {len(physicals)},winner {len(winner)}, looser {len(loser)} , onsets")
# ax[0, 0].plot(kde_time, winner_onsets_conv/len(onsets))
# ax[0, 1].plot(kde_time, winner_offsets_conv /
# len(offsets))
# ax[0, 2].plot(kde_time, winner_physicals_conv /
# len(physicals))
# ax[1, 0].plot(kde_time, loser_onsets_conv/len(onsets))
# ax[1, 1].plot(kde_time, loser_offsets_conv/len(offsets))
# ax[1, 2].plot(kde_time, loser_physicals_conv /
# len(physicals))
# # plot bootstrap lines
for kde in winner_onsets_boot[-1]:
ax[0, 0].plot(kde_time, kde/len(onsets),
color='gray')
for kde in winner_offsets_boot[-1]:
ax[0, 1].plot(kde_time, kde/len(offsets),
color='gray')
for kde in winner_physicals_boot[-1]:
ax[0, 2].plot(kde_time, kde/len(physicals),
color='gray')
for kde in loser_onsets_boot[-1]:
ax[1, 0].plot(kde_time, kde/len(onsets),
color='gray')
for kde in loser_offsets_boot[-1]:
ax[1, 1].plot(kde_time, kde/len(offsets),
color='gray')
for kde in loser_physicals_boot[-1]:
ax[1, 2].plot(kde_time, kde/len(physicals),
color='gray')
# for kde in winner_onsets_boot[-1]:
# ax[0, 0].plot(kde_time, kde,
# color='gray')
# for kde in winner_offsets_boot[-1]:
# ax[0, 1].plot(kde_time, kde,
# color='gray')
# for kde in winner_physicals_boot[-1]:
# ax[0, 2].plot(kde_time, kde,
# color='gray')
# for kde in loser_onsets_boot[-1]:
# ax[1, 0].plot(kde_time, kde,
# color='gray')
# for kde in loser_offsets_boot[-1]:
# ax[1, 1].plot(kde_time, kde,
# color='gray')
# for kde in loser_physicals_boot[-1]:
# ax[1, 2].plot(kde_time, kde,
# color='gray')
# plot bootstrap percentiles
# ax[0, 0].fill_between(
@ -335,79 +390,79 @@ def main(dataroot):
# ax[1, 2].plot(kde_time, np.median(loser_physicals_boot[-1], axis=0),
# color='black', linewidth=2)
ax[0, 0].set_xlim(-30, 30)
plt.show()
winner_onsets = np.sort(flatten(winner_onsets))
winner_offsets = np.sort(flatten(winner_offsets))
winner_physicals = np.sort(flatten(winner_physicals))
loser_onsets = np.sort(flatten(loser_onsets))
loser_offsets = np.sort(flatten(loser_offsets))
loser_physicals = np.sort(flatten(loser_physicals))
winner_onsets_conv = acausal_kde1d(
winner_onsets, kde_time, kernel_width)
winner_offsets_conv = acausal_kde1d(
winner_offsets, kde_time, kernel_width)
winner_physicals_conv = acausal_kde1d(
winner_physicals, kde_time, kernel_width)
loser_onsets_conv = acausal_kde1d(
loser_onsets, kde_time, kernel_width)
loser_offsets_conv = acausal_kde1d(
loser_offsets, kde_time, kernel_width)
loser_physicals_conv = acausal_kde1d(
loser_physicals, kde_time, kernel_width)
winner_onsets_conv = winner_onsets_conv / onset_count
winner_offsets_conv = winner_offsets_conv / offset_count
winner_physicals_conv = winner_physicals_conv / physical_count
loser_onsets_conv = loser_onsets_conv / onset_count
loser_offsets_conv = loser_offsets_conv / offset_count
loser_physicals_conv = loser_physicals_conv / physical_count
winner_onsets_boot = np.concatenate(
winner_onsets_boot)
winner_offsets_boot = np.concatenate(
winner_offsets_boot)
winner_physicals_boot = np.concatenate(
winner_physicals_boot)
loser_onsets_boot = np.concatenate(
loser_onsets_boot)
loser_offsets_boot = np.concatenate(
loser_offsets_boot)
loser_physicals_boot = np.concatenate(
loser_physicals_boot)
percs = [5, 50, 95]
winner_onsets_boot_quarts = np.percentile(
winner_onsets_boot, percs, axis=0)
winner_offsets_boot_quarts = np.percentile(
winner_offsets_boot, percs, axis=0)
winner_physicals_boot_quarts = np.percentile(
winner_physicals_boot, percs, axis=0)
loser_onsets_boot_quarts = np.percentile(
loser_onsets_boot, percs, axis=0)
loser_offsets_boot_quarts = np.percentile(
loser_offsets_boot, percs, axis=0)
loser_physicals_boot_quarts = np.percentile(
loser_physicals_boot, percs, axis=0)
fig, ax = plt.subplots(2, 3, figsize=(
21*ps.cm, 10*ps.cm), sharey=True, sharex=True)
ax[0, 0].plot(kde_time, winner_onsets_conv)
ax[0, 1].plot(kde_time, winner_offsets_conv)
ax[0, 2].plot(kde_time, winner_physicals_conv)
ax[1, 0].plot(kde_time, loser_onsets_conv)
ax[1, 1].plot(kde_time, loser_offsets_conv)
ax[1, 2].plot(kde_time, loser_physicals_conv)
ax[0, 0].plot(kde_time, winner_onsets_boot_quarts[1], c=ps.black)
ax[0, 1].plot(kde_time, winner_offsets_boot_quarts[1], c=ps.black)
ax[0, 2].plot(kde_time, winner_physicals_boot_quarts[1], c=ps.black)
ax[1, 0].plot(kde_time, loser_onsets_boot_quarts[1], c=ps.black)
ax[1, 1].plot(kde_time, loser_offsets_boot_quarts[1], c=ps.black)
ax[1, 2].plot(kde_time, loser_physicals_boot_quarts[1], c=ps.black)
# ax[0, 0].set_xlim(-30, 30)
plt.show()
# winner_onsets = np.sort(flatten(winner_onsets))
# winner_offsets = np.sort(flatten(winner_offsets))
# winner_physicals = np.sort(flatten(winner_physicals))
# loser_onsets = np.sort(flatten(loser_onsets))
# loser_offsets = np.sort(flatten(loser_offsets))
# loser_physicals = np.sort(flatten(loser_physicals))
# winner_onsets_conv = acausal_kde1d(
# winner_onsets, kde_time, kernel_width)
# winner_offsets_conv = acausal_kde1d(
# winner_offsets, kde_time, kernel_width)
# winner_physicals_conv = acausal_kde1d(
# winner_physicals, kde_time, kernel_width)
# loser_onsets_conv = acausal_kde1d(
# loser_onsets, kde_time, kernel_width)
# loser_offsets_conv = acausal_kde1d(
# loser_offsets, kde_time, kernel_width)
# loser_physicals_conv = acausal_kde1d(
# loser_physicals, kde_time, kernel_width)
# winner_onsets_conv = winner_onsets_conv / onset_count
# winner_offsets_conv = winner_offsets_conv / offset_count
# winner_physicals_conv = winner_physicals_conv / physical_count
# loser_onsets_conv = loser_onsets_conv / onset_count
# loser_offsets_conv = loser_offsets_conv / offset_count
# loser_physicals_conv = loser_physicals_conv / physical_count
# winner_onsets_boot = np.concatenate(
# winner_onsets_boot)
# winner_offsets_boot = np.concatenate(
# winner_offsets_boot)
# winner_physicals_boot = np.concatenate(
# winner_physicals_boot)
# loser_onsets_boot = np.concatenate(
# loser_onsets_boot)
# loser_offsets_boot = np.concatenate(
# loser_offsets_boot)
# loser_physicals_boot = np.concatenate(
# loser_physicals_boot)
# percs = [5, 50, 95]
# winner_onsets_boot_quarts = np.percentile(
# winner_onsets_boot, percs, axis=0)
# winner_offsets_boot_quarts = np.percentile(
# winner_offsets_boot, percs, axis=0)
# winner_physicals_boot_quarts = np.percentile(
# winner_physicals_boot, percs, axis=0)
# loser_onsets_boot_quarts = np.percentile(
# loser_onsets_boot, percs, axis=0)
# loser_offsets_boot_quarts = np.percentile(
# loser_offsets_boot, percs, axis=0)
# loser_physicals_boot_quarts = np.percentile(
# loser_physicals_boot, percs, axis=0)
# fig, ax = plt.subplots(2, 3, figsize=(
# 21*ps.cm, 10*ps.cm), sharey=True, sharex=True)
# ax[0, 0].plot(kde_time, winner_onsets_conv)
# ax[0, 1].plot(kde_time, winner_offsets_conv)
# ax[0, 2].plot(kde_time, winner_physicals_conv)
# ax[1, 0].plot(kde_time, loser_onsets_conv)
# ax[1, 1].plot(kde_time, loser_offsets_conv)
# ax[1, 2].plot(kde_time, loser_physicals_conv)
# ax[0, 0].plot(kde_time, winner_onsets_boot_quarts[1], c=ps.black)
# ax[0, 1].plot(kde_time, winner_offsets_boot_quarts[1], c=ps.black)
# ax[0, 2].plot(kde_time, winner_physicals_boot_quarts[1], c=ps.black)
# ax[1, 0].plot(kde_time, loser_onsets_boot_quarts[1], c=ps.black)
# ax[1, 1].plot(kde_time, loser_offsets_boot_quarts[1], c=ps.black)
# ax[1, 2].plot(kde_time, loser_physicals_boot_quarts[1], c=ps.black)
# for kde in winner_onsets_boot:
# ax[0, 0].plot(kde_time, kde,
@ -428,43 +483,43 @@ def main(dataroot):
# ax[1, 2].plot(kde_time, kde,
# color='gray')
ax[0, 0].fill_between(kde_time,
winner_onsets_boot_quarts[0],
winner_onsets_boot_quarts[2],
color=ps.gray,
alpha=0.5)
ax[0, 1].fill_between(kde_time,
winner_offsets_boot_quarts[0],
winner_offsets_boot_quarts[2],
color=ps.gray,
alpha=0.5)
ax[0, 2].fill_between(kde_time,
loser_physicals_boot_quarts[0],
loser_physicals_boot_quarts[2],
color=ps.gray,
alpha=0.5)
ax[1, 0].fill_between(kde_time,
loser_onsets_boot_quarts[0],
loser_onsets_boot_quarts[2],
color=ps.gray,
alpha=0.5)
ax[1, 1].fill_between(kde_time,
loser_offsets_boot_quarts[0],
loser_offsets_boot_quarts[2],
color=ps.gray,
alpha=0.5)
ax[1, 2].fill_between(kde_time,
loser_physicals_boot_quarts[0],
loser_physicals_boot_quarts[2],
color=ps.gray,
alpha=0.5)
plt.show()
# ax[0, 0].fill_between(kde_time,
# winner_onsets_boot_quarts[0],
# winner_onsets_boot_quarts[2],
# color=ps.gray,
# alpha=0.5)
# ax[0, 1].fill_between(kde_time,
# winner_offsets_boot_quarts[0],
# winner_offsets_boot_quarts[2],
# color=ps.gray,
# alpha=0.5)
# ax[0, 2].fill_between(kde_time,
# loser_physicals_boot_quarts[0],
# loser_physicals_boot_quarts[2],
# color=ps.gray,
# alpha=0.5)
# ax[1, 0].fill_between(kde_time,
# loser_onsets_boot_quarts[0],
# loser_onsets_boot_quarts[2],
# color=ps.gray,
# alpha=0.5)
# ax[1, 1].fill_between(kde_time,
# loser_offsets_boot_quarts[0],
# loser_offsets_boot_quarts[2],
# color=ps.gray,
# alpha=0.5)
# ax[1, 2].fill_between(kde_time,
# loser_physicals_boot_quarts[0],
# loser_physicals_boot_quarts[2],
# color=ps.gray,
# alpha=0.5)
# plt.show()
if __name__ == '__main__':

Binary file not shown.