new introplot
This commit is contained in:
parent
449bc130a0
commit
b0447b8ab3
@ -17,7 +17,7 @@ def main():
|
|||||||
data = LoadData(datapath)
|
data = LoadData(datapath)
|
||||||
|
|
||||||
# good chirp times for data: 2022-06-02-10_00
|
# good chirp times for data: 2022-06-02-10_00
|
||||||
window_start_seconds = 3 * 60 * 60 + 6 * 60 + 43.5 + 9 + 6.25
|
window_start_seconds = 3 * 60 * 60 + 6 * 60 + 43.5 + 9 + 6.24
|
||||||
window_start_index = window_start_seconds * data.raw_rate
|
window_start_index = window_start_seconds * data.raw_rate
|
||||||
window_duration_seconds = 0.2
|
window_duration_seconds = 0.2
|
||||||
window_duration_index = window_duration_seconds * data.raw_rate
|
window_duration_index = window_duration_seconds * data.raw_rate
|
||||||
@ -27,8 +27,8 @@ def main():
|
|||||||
raw = data.raw[window_start_index:window_start_index +
|
raw = data.raw[window_start_index:window_start_index +
|
||||||
window_duration_index, 10]
|
window_duration_index, 10]
|
||||||
|
|
||||||
fig, (ax1, ax2, ax3) = plt.subplots(
|
fig, ax = plt.subplots(
|
||||||
3, 1, figsize=(12 * ps.cm, 10*ps.cm), sharex=True, sharey=True)
|
1, 1, figsize=(14 * ps.cm, 6*ps.cm), sharex=True, sharey=True)
|
||||||
|
|
||||||
# plot instantaneous frequency
|
# plot instantaneous frequency
|
||||||
filtered1 = bandpass_filter(
|
filtered1 = bandpass_filter(
|
||||||
@ -41,13 +41,14 @@ def main():
|
|||||||
freqtime2, freq2 = instantaneous_frequency(
|
freqtime2, freq2 = instantaneous_frequency(
|
||||||
filtered2, data.raw_rate, smoothing_window=3)
|
filtered2, data.raw_rate, smoothing_window=3)
|
||||||
|
|
||||||
ax1.plot(freqtime1*timescaler, freq1, color=ps.red,
|
ax.plot(freqtime1*timescaler, freq1, color=ps.gblue1,
|
||||||
lw=2, label=f"fish 1, {np.median(freq1):.0f} Hz")
|
lw=2, label="fish 1")
|
||||||
ax1.plot(freqtime2*timescaler, freq2, color=ps.orange,
|
ax.plot(freqtime2*timescaler, freq2, color=ps.gblue2,
|
||||||
lw=2, label=f"fish 2, {np.median(freq2):.0f} Hz")
|
lw=2, label="fish 2")
|
||||||
ax1.legend(bbox_to_anchor=(0, 1.02, 1, 0.2), loc="lower center",
|
ax.legend(bbox_to_anchor=(0, 1.02, 1, 0.2), loc="lower center",
|
||||||
mode="normal", borderaxespad=0, ncol=2)
|
mode="normal", borderaxespad=0, ncol=2)
|
||||||
ps.hide_xax(ax1)
|
# ax.legend(bbox_to_anchor=(1.04, 1), borderaxespad=0)
|
||||||
|
# # ps.hide_xax(ax1)
|
||||||
|
|
||||||
# plot fine spectrogram
|
# plot fine spectrogram
|
||||||
spec_power, spec_freqs, spec_times = spectrogram(
|
spec_power, spec_freqs, spec_times = spectrogram(
|
||||||
@ -57,11 +58,11 @@ def main():
|
|||||||
overlap_frac=0.2,
|
overlap_frac=0.2,
|
||||||
)
|
)
|
||||||
|
|
||||||
ylims = [300, 1200]
|
ylims = [300, 1300]
|
||||||
fmask = np.zeros(spec_freqs.shape, dtype=bool)
|
fmask = np.zeros(spec_freqs.shape, dtype=bool)
|
||||||
fmask[(spec_freqs > ylims[0]) & (spec_freqs < ylims[1])] = True
|
fmask[(spec_freqs > ylims[0]) & (spec_freqs < ylims[1])] = True
|
||||||
|
|
||||||
ax2.imshow(
|
ax.imshow(
|
||||||
decibel(spec_power[fmask, :]),
|
decibel(spec_power[fmask, :]),
|
||||||
extent=[
|
extent=[
|
||||||
spec_times[0]*timescaler,
|
spec_times[0]*timescaler,
|
||||||
@ -73,45 +74,47 @@ def main():
|
|||||||
origin="lower",
|
origin="lower",
|
||||||
interpolation="gaussian",
|
interpolation="gaussian",
|
||||||
alpha=1,
|
alpha=1,
|
||||||
|
vmin=-100,
|
||||||
|
vmax=-80,
|
||||||
)
|
)
|
||||||
ps.hide_xax(ax2)
|
# ps.hide_xax(ax2)
|
||||||
|
|
||||||
# plot coarse spectrogram
|
# # plot coarse spectrogram
|
||||||
spec_power, spec_freqs, spec_times = spectrogram(
|
# spec_power, spec_freqs, spec_times = spectrogram(
|
||||||
raw,
|
# raw,
|
||||||
ratetime=data.raw_rate,
|
# ratetime=data.raw_rate,
|
||||||
freq_resolution=10,
|
# freq_resolution=10,
|
||||||
overlap_frac=0.3,
|
# overlap_frac=0.3,
|
||||||
)
|
# )
|
||||||
fmask = np.zeros(spec_freqs.shape, dtype=bool)
|
# fmask = np.zeros(spec_freqs.shape, dtype=bool)
|
||||||
fmask[(spec_freqs > ylims[0]) & (spec_freqs < ylims[1])] = True
|
# fmask[(spec_freqs > ylims[0]) & (spec_freqs < ylims[1])] = True
|
||||||
ax3.imshow(
|
# ax3.imshow(
|
||||||
decibel(spec_power[fmask, :]),
|
# decibel(spec_power[fmask, :]),
|
||||||
extent=[
|
# extent=[
|
||||||
spec_times[0]*timescaler,
|
# spec_times[0]*timescaler,
|
||||||
spec_times[-1]*timescaler,
|
# spec_times[-1]*timescaler,
|
||||||
spec_freqs[fmask][0],
|
# spec_freqs[fmask][0],
|
||||||
spec_freqs[fmask][-1],
|
# spec_freqs[fmask][-1],
|
||||||
],
|
# ],
|
||||||
aspect="auto",
|
# aspect="auto",
|
||||||
origin="lower",
|
# origin="lower",
|
||||||
interpolation="gaussian",
|
# interpolation="gaussian",
|
||||||
alpha=1,
|
# alpha=1,
|
||||||
)
|
# )
|
||||||
# ps.hide_xax(ax3)
|
# # ps.hide_xax(ax3)
|
||||||
|
|
||||||
ax3.set_xlabel("time [ms]")
|
ax.set_xlabel("time [ms]")
|
||||||
ax2.set_ylabel("frequency [Hz]")
|
ax.set_ylabel("frequency [Hz]")
|
||||||
|
|
||||||
ax1.set_yticks(np.arange(400, 1201, 400))
|
# ax.set_yticks(np.arange(400, 1201, 400))
|
||||||
ax1.spines.left.set_bounds((400, 1200))
|
# ax.spines.left.set_bounds((400, 1200))
|
||||||
ax2.set_yticks(np.arange(400, 1201, 400))
|
# ax2.set_yticks(np.arange(400, 1201, 400))
|
||||||
ax2.spines.left.set_bounds((400, 1200))
|
# ax2.spines.left.set_bounds((400, 1200))
|
||||||
ax3.set_yticks(np.arange(400, 1201, 400))
|
# ax3.set_yticks(np.arange(400, 1201, 400))
|
||||||
ax3.spines.left.set_bounds((400, 1200))
|
# ax3.spines.left.set_bounds((400, 1200))
|
||||||
|
|
||||||
plt.subplots_adjust(left=0.17, right=0.98, top=0.9,
|
plt.subplots_adjust(left=0.17, right=0.98, top=0.87,
|
||||||
bottom=0.14, hspace=0.35)
|
bottom=0.24, hspace=0.35)
|
||||||
|
|
||||||
plt.savefig('../poster/figs/introplot.pdf')
|
plt.savefig('../poster/figs/introplot.pdf')
|
||||||
plt.show()
|
plt.show()
|
||||||
|
@ -1,18 +1,18 @@
|
|||||||
from extract_chirps import get_valid_datasets
|
|
||||||
import os
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
|
|
||||||
from tqdm import tqdm
|
from modules.plotstyle import PlotStyle
|
||||||
from IPython import embed
|
|
||||||
from pandas import read_csv
|
|
||||||
from modules.logger import makeLogger
|
|
||||||
from modules.datahandling import flatten, causal_kde1d, acausal_kde1d
|
|
||||||
from modules.behaviour_handling import (
|
from modules.behaviour_handling import (
|
||||||
Behavior, correct_chasing_events, center_chirps)
|
Behavior, correct_chasing_events, center_chirps)
|
||||||
from modules.plotstyle import PlotStyle
|
from modules.datahandling import flatten, causal_kde1d, acausal_kde1d
|
||||||
|
from modules.logger import makeLogger
|
||||||
|
from pandas import read_csv
|
||||||
|
from IPython import embed
|
||||||
|
from tqdm import tqdm
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
import os
|
||||||
|
from extract_chirps import get_valid_datasets
|
||||||
|
|
||||||
|
|
||||||
logger = makeLogger(__name__)
|
logger = makeLogger(__name__)
|
||||||
ps = PlotStyle()
|
ps = PlotStyle()
|
||||||
@ -23,16 +23,16 @@ def bootstrap(data, nresamples, kde_time, kernel_width, event_times, time_before
|
|||||||
bootstrapped_kdes = []
|
bootstrapped_kdes = []
|
||||||
data = data[data <= 3*60*60] # only night time
|
data = data[data <= 3*60*60] # only night time
|
||||||
|
|
||||||
# diff_data = np.diff(np.sort(data), prepend=0)
|
diff_data = np.diff(np.sort(data), prepend=0)
|
||||||
# if len(data) != 0:
|
# if len(data) != 0:
|
||||||
# mean_chirprate = (len(data) - 1) / (data[-1] - data[0])
|
# mean_chirprate = (len(data) - 1) / (data[-1] - data[0])
|
||||||
|
|
||||||
for i in tqdm(range(nresamples)):
|
for i in tqdm(range(nresamples)):
|
||||||
|
|
||||||
# np.random.shuffle(diff_data)
|
np.random.shuffle(diff_data)
|
||||||
|
|
||||||
# bootstrapped_data = np.cumsum(diff_data)
|
bootstrapped_data = np.cumsum(diff_data)
|
||||||
bootstrapped_data = data + np.random.randn(len(data)) * 10
|
# bootstrapped_data = data + np.random.randn(len(data)) * 10
|
||||||
|
|
||||||
bootstrap_data_centered = center_chirps(
|
bootstrap_data_centered = center_chirps(
|
||||||
bootstrapped_data, event_times, time_before, time_after)
|
bootstrapped_data, event_times, time_before, time_after)
|
||||||
@ -40,8 +40,8 @@ def bootstrap(data, nresamples, kde_time, kernel_width, event_times, time_before
|
|||||||
bootstrapped_kde = acausal_kde1d(
|
bootstrapped_kde = acausal_kde1d(
|
||||||
bootstrap_data_centered, time=kde_time, width=kernel_width)
|
bootstrap_data_centered, time=kde_time, width=kernel_width)
|
||||||
|
|
||||||
# bootstrapped_kdes = list(np.asarray(
|
bootstrapped_kde = list(np.asarray(
|
||||||
# bootstrapped_kdes) / len(event_times))
|
bootstrapped_kde) / len(event_times))
|
||||||
|
|
||||||
bootstrapped_kdes.append(bootstrapped_kde)
|
bootstrapped_kdes.append(bootstrapped_kde)
|
||||||
|
|
||||||
@ -58,20 +58,20 @@ def jackknife(data, nresamples, subsetsize, kde_time, kernel_width, event_times,
|
|||||||
|
|
||||||
for i in tqdm(range(nresamples)):
|
for i in tqdm(range(nresamples)):
|
||||||
|
|
||||||
bootstrapped_data = np.random.sample(data, subsetsize, replace=False)
|
jackknifed_data = np.random.choice(data, subsetsize, replace=False)
|
||||||
|
|
||||||
bootstrapped_data = np.cumsum(diff_data)
|
jackknifed_data = np.cumsum(diff_data)
|
||||||
|
|
||||||
bootstrap_data_centered = center_chirps(
|
jackknifed_data_centered = center_chirps(
|
||||||
bootstrapped_data, event_times, time_before, time_after)
|
jackknifed_data, event_times, time_before, time_after)
|
||||||
|
|
||||||
bootstrapped_kde = acausal_kde1d(
|
jackknifed_kde = acausal_kde1d(
|
||||||
bootstrap_data_centered, time=kde_time, width=kernel_width)
|
jackknifed_data_centered, time=kde_time, width=kernel_width)
|
||||||
|
|
||||||
# bootstrapped_kdes = list(np.asarray(
|
jackknifed_kde = list(np.asarray(
|
||||||
# bootstrapped_kdes) / len(event_times))
|
jackknifed_kde) / len(event_times))
|
||||||
|
|
||||||
jackknife_kdes.append(bootstrapped_kde)
|
jackknife_kdes.append(jackknifed_kde)
|
||||||
|
|
||||||
return jackknife_kdes
|
return jackknife_kdes
|
||||||
|
|
||||||
@ -102,14 +102,14 @@ def get_chirp_winner_loser(folder_name, Behavior, order_meta_df):
|
|||||||
|
|
||||||
def main(dataroot):
|
def main(dataroot):
|
||||||
|
|
||||||
foldernames, _ = get_valid_datasets(dataroot)
|
foldernames, _ = np.asarray(get_valid_datasets(dataroot))
|
||||||
plot_all = True
|
plot_all = True
|
||||||
time_before = 60
|
time_before = 90
|
||||||
time_after = 60
|
time_after = 90
|
||||||
dt = 0.001
|
dt = 0.001
|
||||||
kernel_width = 1
|
kernel_width = 2
|
||||||
kde_time = np.arange(-time_before, time_after, dt)
|
kde_time = np.arange(-time_before, time_after, dt)
|
||||||
nbootstraps = 2
|
nbootstraps = 50
|
||||||
|
|
||||||
meta_path = (
|
meta_path = (
|
||||||
'/').join(foldernames[0].split('/')[:-2]) + '/order_meta.csv'
|
'/').join(foldernames[0].split('/')[:-2]) + '/order_meta.csv'
|
||||||
@ -135,9 +135,19 @@ def main(dataroot):
|
|||||||
onset_count = 0
|
onset_count = 0
|
||||||
offset_count = 0
|
offset_count = 0
|
||||||
physical_count = 0
|
physical_count = 0
|
||||||
|
# winner_count = 0
|
||||||
|
# loser_count = 0
|
||||||
|
# winner_onset_chirpcount = 0
|
||||||
|
# winner_offset_chirpcount = 0
|
||||||
|
# winner_physical_chirpcount = 0
|
||||||
|
# loser_onset_chirpcount = 0
|
||||||
|
# loser_offset_chirpcount = 0
|
||||||
|
# loser_physical_chirpcount = 0
|
||||||
|
fig, ax = plt.subplots(1, 2, figsize=(
|
||||||
|
14 * ps.cm, 7*ps.cm), sharey=True, sharex=True)
|
||||||
# Iterate over all recordings and save chirp- and event-timestamps
|
# Iterate over all recordings and save chirp- and event-timestamps
|
||||||
for folder in tqdm(foldernames):
|
good_recs = np.asarray([0, 15])
|
||||||
|
for i, folder in tqdm(enumerate(foldernames[good_recs])):
|
||||||
|
|
||||||
foldername = folder.split('/')[-2]
|
foldername = folder.split('/')[-2]
|
||||||
# logger.info('Loading data from folder: {}'.format(foldername))
|
# logger.info('Loading data from folder: {}'.format(foldername))
|
||||||
@ -153,9 +163,10 @@ def main(dataroot):
|
|||||||
timestamps = timestamps[timestamps < 3*60*60] # only night time
|
timestamps = timestamps[timestamps < 3*60*60] # only night time
|
||||||
|
|
||||||
winner, loser = get_chirp_winner_loser(folder, bh, meta)
|
winner, loser = get_chirp_winner_loser(folder, bh, meta)
|
||||||
|
|
||||||
if winner is None:
|
if winner is None:
|
||||||
continue
|
continue
|
||||||
|
# winner_count += len(winner)
|
||||||
|
# loser_count += len(loser)
|
||||||
|
|
||||||
onsets = (timestamps[category == 0])
|
onsets = (timestamps[category == 0])
|
||||||
offsets = (timestamps[category == 1])
|
offsets = (timestamps[category == 1])
|
||||||
@ -179,42 +190,48 @@ def main(dataroot):
|
|||||||
loser_physicals.append(center_chirps(
|
loser_physicals.append(center_chirps(
|
||||||
loser, physicals, time_before, time_after))
|
loser, physicals, time_before, time_after))
|
||||||
|
|
||||||
|
# winner_onset_chirpcount += len(winner_onsets[-1])
|
||||||
|
# winner_offset_chirpcount += len(winner_offsets[-1])
|
||||||
|
# winner_physical_chirpcount += len(winner_physicals[-1])
|
||||||
|
# loser_onset_chirpcount += len(loser_onsets[-1])
|
||||||
|
# loser_offset_chirpcount += len(loser_offsets[-1])
|
||||||
|
# loser_physical_chirpcount += len(loser_physicals[-1])
|
||||||
# bootstrap
|
# bootstrap
|
||||||
# chirps = [winner, winner, winner, loser, loser, loser]
|
# chirps = [winner, winner, winner, loser, loser, loser]
|
||||||
|
|
||||||
winner_onsets_boot.append(bootstrap(
|
# winner_onsets_boot.append(bootstrap(
|
||||||
winner,
|
# winner,
|
||||||
nresamples=nbootstraps,
|
# nresamples=nbootstraps,
|
||||||
kde_time=kde_time,
|
# kde_time=kde_time,
|
||||||
kernel_width=kernel_width,
|
# kernel_width=kernel_width,
|
||||||
event_times=onsets,
|
# event_times=onsets,
|
||||||
time_before=time_before,
|
# time_before=time_before,
|
||||||
time_after=time_after))
|
# time_after=time_after))
|
||||||
winner_offsets_boot.append(bootstrap(
|
# winner_offsets_boot.append(bootstrap(
|
||||||
winner,
|
# winner,
|
||||||
nresamples=nbootstraps,
|
# nresamples=nbootstraps,
|
||||||
kde_time=kde_time,
|
# kde_time=kde_time,
|
||||||
kernel_width=kernel_width,
|
# kernel_width=kernel_width,
|
||||||
event_times=offsets,
|
# event_times=offsets,
|
||||||
time_before=time_before,
|
# time_before=time_before,
|
||||||
time_after=time_after))
|
# time_after=time_after))
|
||||||
winner_physicals_boot.append(bootstrap(
|
# winner_physicals_boot.append(bootstrap(
|
||||||
winner,
|
# winner,
|
||||||
nresamples=nbootstraps,
|
# nresamples=nbootstraps,
|
||||||
kde_time=kde_time,
|
# kde_time=kde_time,
|
||||||
kernel_width=kernel_width,
|
# kernel_width=kernel_width,
|
||||||
event_times=physicals,
|
# event_times=physicals,
|
||||||
time_before=time_before,
|
# time_before=time_before,
|
||||||
time_after=time_after))
|
# time_after=time_after))
|
||||||
|
|
||||||
loser_onsets_boot.append(bootstrap(
|
# loser_onsets_boot.append(bootstrap(
|
||||||
loser,
|
# loser,
|
||||||
nresamples=nbootstraps,
|
# nresamples=nbootstraps,
|
||||||
kde_time=kde_time,
|
# kde_time=kde_time,
|
||||||
kernel_width=kernel_width,
|
# kernel_width=kernel_width,
|
||||||
event_times=onsets,
|
# event_times=onsets,
|
||||||
time_before=time_before,
|
# time_before=time_before,
|
||||||
time_after=time_after))
|
# time_after=time_after))
|
||||||
loser_offsets_boot.append(bootstrap(
|
loser_offsets_boot.append(bootstrap(
|
||||||
loser,
|
loser,
|
||||||
nresamples=nbootstraps,
|
nresamples=nbootstraps,
|
||||||
@ -223,61 +240,99 @@ def main(dataroot):
|
|||||||
event_times=offsets,
|
event_times=offsets,
|
||||||
time_before=time_before,
|
time_before=time_before,
|
||||||
time_after=time_after))
|
time_after=time_after))
|
||||||
loser_physicals_boot.append(bootstrap(
|
# loser_physicals_boot.append(bootstrap(
|
||||||
|
# loser,
|
||||||
|
# nresamples=nbootstraps,
|
||||||
|
# kde_time=kde_time,
|
||||||
|
# kernel_width=kernel_width,
|
||||||
|
# event_times=physicals,
|
||||||
|
# time_before=time_before,
|
||||||
|
# time_after=time_after))
|
||||||
|
|
||||||
|
loser_offsets_jackknife = jackknife(
|
||||||
loser,
|
loser,
|
||||||
nresamples=nbootstraps,
|
nresamples=nbootstraps,
|
||||||
|
subsetsize=0.5,
|
||||||
kde_time=kde_time,
|
kde_time=kde_time,
|
||||||
kernel_width=kernel_width,
|
kernel_width=kernel_width,
|
||||||
event_times=physicals,
|
event_times=offsets,
|
||||||
time_before=time_before,
|
time_before=time_before,
|
||||||
time_after=time_after))
|
time_after=time_after)
|
||||||
|
|
||||||
if plot_all:
|
if plot_all:
|
||||||
|
|
||||||
winner_onsets_conv = acausal_kde1d(
|
# winner_onsets_conv = acausal_kde1d(
|
||||||
winner_onsets[-1], kde_time, kernel_width)
|
# winner_onsets[-1], kde_time, kernel_width)
|
||||||
winner_offsets_conv = acausal_kde1d(
|
# winner_offsets_conv = acausal_kde1d(
|
||||||
winner_offsets[-1], kde_time, kernel_width)
|
# winner_offsets[-1], kde_time, kernel_width)
|
||||||
winner_physicals_conv = acausal_kde1d(
|
# winner_physicals_conv = acausal_kde1d(
|
||||||
winner_physicals[-1], kde_time, kernel_width)
|
# winner_physicals[-1], kde_time, kernel_width)
|
||||||
|
|
||||||
loser_onsets_conv = acausal_kde1d(
|
# loser_onsets_conv = acausal_kde1d(
|
||||||
loser_onsets[-1], kde_time, kernel_width)
|
# loser_onsets[-1], kde_time, kernel_width)
|
||||||
loser_offsets_conv = acausal_kde1d(
|
loser_offsets_conv = acausal_kde1d(
|
||||||
loser_offsets[-1], kde_time, kernel_width)
|
loser_offsets[-1], kde_time, kernel_width)
|
||||||
loser_physicals_conv = acausal_kde1d(
|
# loser_physicals_conv = acausal_kde1d(
|
||||||
loser_physicals[-1], kde_time, kernel_width)
|
# loser_physicals[-1], kde_time, kernel_width)
|
||||||
|
|
||||||
fig, ax = plt.subplots(2, 3, figsize=(
|
ax[i].plot(kde_time, loser_offsets_conv/len(offsets))
|
||||||
21*ps.cm, 10*ps.cm), sharey=True, sharex=True)
|
|
||||||
ax[0, 0].set_title(
|
ax[i].fill_between(
|
||||||
f"{foldername}, onsets {len(onsets)}, offsets {len(offsets)}, physicals {len(physicals)},winner {len(winner)}, looser {len(loser)} , onsets")
|
kde_time,
|
||||||
ax[0, 0].plot(kde_time, winner_onsets_conv/len(onsets))
|
np.percentile(loser_offsets_boot[-1], 5, axis=0),
|
||||||
ax[0, 1].plot(kde_time, winner_offsets_conv/len(offsets))
|
np.percentile(loser_offsets_boot[-1], 95, axis=0),
|
||||||
ax[0, 2].plot(kde_time, winner_physicals_conv/len(physicals))
|
color=ps.gray,
|
||||||
ax[1, 0].plot(kde_time, loser_onsets_conv/len(onsets))
|
alpha=0.5)
|
||||||
ax[1, 1].plot(kde_time, loser_offsets_conv/len(offsets))
|
|
||||||
ax[1, 2].plot(kde_time, loser_physicals_conv/len(physicals))
|
ax[i].plot(kde_time, np.median(loser_offsets_boot[-1], axis=0),
|
||||||
|
color=ps.black, linewidth=2)
|
||||||
|
|
||||||
|
ax[i].fill_between(
|
||||||
|
kde_time,
|
||||||
|
np.percentile(loser_offsets_jackknife, 5, axis=0),
|
||||||
|
np.percentile(loser_offsets_jackknife, 95, axis=0),
|
||||||
|
color=ps.blue,
|
||||||
|
alpha=0.5)
|
||||||
|
ax[i].plot(kde_time, np.median(loser_offsets_jackknife, axis=0),
|
||||||
|
color=ps.white, linewidth=2)
|
||||||
|
|
||||||
|
ax[i].set_xlim(-60, 60)
|
||||||
|
|
||||||
|
embed()
|
||||||
|
|
||||||
|
# fig, ax = plt.subplots(2, 3, figsize=(
|
||||||
|
# 21*ps.cm, 10*ps.cm), sharey=True, sharex=True)
|
||||||
|
# ax[0, 0].set_title(
|
||||||
|
# f"{foldername}, onsets {len(onsets)}, offsets {len(offsets)}, physicals {len(physicals)},winner {len(winner)}, looser {len(loser)} , onsets")
|
||||||
|
# ax[0, 0].plot(kde_time, winner_onsets_conv/len(onsets))
|
||||||
|
# ax[0, 1].plot(kde_time, winner_offsets_conv /
|
||||||
|
# len(offsets))
|
||||||
|
# ax[0, 2].plot(kde_time, winner_physicals_conv /
|
||||||
|
# len(physicals))
|
||||||
|
# ax[1, 0].plot(kde_time, loser_onsets_conv/len(onsets))
|
||||||
|
# ax[1, 1].plot(kde_time, loser_offsets_conv/len(offsets))
|
||||||
|
# ax[1, 2].plot(kde_time, loser_physicals_conv /
|
||||||
|
# len(physicals))
|
||||||
|
|
||||||
# # plot bootstrap lines
|
# # plot bootstrap lines
|
||||||
for kde in winner_onsets_boot[-1]:
|
# for kde in winner_onsets_boot[-1]:
|
||||||
ax[0, 0].plot(kde_time, kde/len(onsets),
|
# ax[0, 0].plot(kde_time, kde,
|
||||||
color='gray')
|
# color='gray')
|
||||||
for kde in winner_offsets_boot[-1]:
|
# for kde in winner_offsets_boot[-1]:
|
||||||
ax[0, 1].plot(kde_time, kde/len(offsets),
|
# ax[0, 1].plot(kde_time, kde,
|
||||||
color='gray')
|
# color='gray')
|
||||||
for kde in winner_physicals_boot[-1]:
|
# for kde in winner_physicals_boot[-1]:
|
||||||
ax[0, 2].plot(kde_time, kde/len(physicals),
|
# ax[0, 2].plot(kde_time, kde,
|
||||||
color='gray')
|
# color='gray')
|
||||||
for kde in loser_onsets_boot[-1]:
|
# for kde in loser_onsets_boot[-1]:
|
||||||
ax[1, 0].plot(kde_time, kde/len(onsets),
|
# ax[1, 0].plot(kde_time, kde,
|
||||||
color='gray')
|
# color='gray')
|
||||||
for kde in loser_offsets_boot[-1]:
|
# for kde in loser_offsets_boot[-1]:
|
||||||
ax[1, 1].plot(kde_time, kde/len(offsets),
|
# ax[1, 1].plot(kde_time, kde,
|
||||||
color='gray')
|
# color='gray')
|
||||||
for kde in loser_physicals_boot[-1]:
|
# for kde in loser_physicals_boot[-1]:
|
||||||
ax[1, 2].plot(kde_time, kde/len(physicals),
|
# ax[1, 2].plot(kde_time, kde,
|
||||||
color='gray')
|
# color='gray')
|
||||||
|
|
||||||
# plot bootstrap percentiles
|
# plot bootstrap percentiles
|
||||||
# ax[0, 0].fill_between(
|
# ax[0, 0].fill_between(
|
||||||
@ -335,79 +390,79 @@ def main(dataroot):
|
|||||||
# ax[1, 2].plot(kde_time, np.median(loser_physicals_boot[-1], axis=0),
|
# ax[1, 2].plot(kde_time, np.median(loser_physicals_boot[-1], axis=0),
|
||||||
# color='black', linewidth=2)
|
# color='black', linewidth=2)
|
||||||
|
|
||||||
ax[0, 0].set_xlim(-30, 30)
|
# ax[0, 0].set_xlim(-30, 30)
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
winner_onsets = np.sort(flatten(winner_onsets))
|
# winner_onsets = np.sort(flatten(winner_onsets))
|
||||||
winner_offsets = np.sort(flatten(winner_offsets))
|
# winner_offsets = np.sort(flatten(winner_offsets))
|
||||||
winner_physicals = np.sort(flatten(winner_physicals))
|
# winner_physicals = np.sort(flatten(winner_physicals))
|
||||||
loser_onsets = np.sort(flatten(loser_onsets))
|
# loser_onsets = np.sort(flatten(loser_onsets))
|
||||||
loser_offsets = np.sort(flatten(loser_offsets))
|
# loser_offsets = np.sort(flatten(loser_offsets))
|
||||||
loser_physicals = np.sort(flatten(loser_physicals))
|
# loser_physicals = np.sort(flatten(loser_physicals))
|
||||||
|
|
||||||
winner_onsets_conv = acausal_kde1d(
|
# winner_onsets_conv = acausal_kde1d(
|
||||||
winner_onsets, kde_time, kernel_width)
|
# winner_onsets, kde_time, kernel_width)
|
||||||
winner_offsets_conv = acausal_kde1d(
|
# winner_offsets_conv = acausal_kde1d(
|
||||||
winner_offsets, kde_time, kernel_width)
|
# winner_offsets, kde_time, kernel_width)
|
||||||
winner_physicals_conv = acausal_kde1d(
|
# winner_physicals_conv = acausal_kde1d(
|
||||||
winner_physicals, kde_time, kernel_width)
|
# winner_physicals, kde_time, kernel_width)
|
||||||
loser_onsets_conv = acausal_kde1d(
|
# loser_onsets_conv = acausal_kde1d(
|
||||||
loser_onsets, kde_time, kernel_width)
|
# loser_onsets, kde_time, kernel_width)
|
||||||
loser_offsets_conv = acausal_kde1d(
|
# loser_offsets_conv = acausal_kde1d(
|
||||||
loser_offsets, kde_time, kernel_width)
|
# loser_offsets, kde_time, kernel_width)
|
||||||
loser_physicals_conv = acausal_kde1d(
|
# loser_physicals_conv = acausal_kde1d(
|
||||||
loser_physicals, kde_time, kernel_width)
|
# loser_physicals, kde_time, kernel_width)
|
||||||
|
|
||||||
winner_onsets_conv = winner_onsets_conv / onset_count
|
# winner_onsets_conv = winner_onsets_conv / onset_count
|
||||||
winner_offsets_conv = winner_offsets_conv / offset_count
|
# winner_offsets_conv = winner_offsets_conv / offset_count
|
||||||
winner_physicals_conv = winner_physicals_conv / physical_count
|
# winner_physicals_conv = winner_physicals_conv / physical_count
|
||||||
loser_onsets_conv = loser_onsets_conv / onset_count
|
# loser_onsets_conv = loser_onsets_conv / onset_count
|
||||||
loser_offsets_conv = loser_offsets_conv / offset_count
|
# loser_offsets_conv = loser_offsets_conv / offset_count
|
||||||
loser_physicals_conv = loser_physicals_conv / physical_count
|
# loser_physicals_conv = loser_physicals_conv / physical_count
|
||||||
|
|
||||||
winner_onsets_boot = np.concatenate(
|
# winner_onsets_boot = np.concatenate(
|
||||||
winner_onsets_boot)
|
# winner_onsets_boot)
|
||||||
winner_offsets_boot = np.concatenate(
|
# winner_offsets_boot = np.concatenate(
|
||||||
winner_offsets_boot)
|
# winner_offsets_boot)
|
||||||
winner_physicals_boot = np.concatenate(
|
# winner_physicals_boot = np.concatenate(
|
||||||
winner_physicals_boot)
|
# winner_physicals_boot)
|
||||||
loser_onsets_boot = np.concatenate(
|
# loser_onsets_boot = np.concatenate(
|
||||||
loser_onsets_boot)
|
# loser_onsets_boot)
|
||||||
loser_offsets_boot = np.concatenate(
|
# loser_offsets_boot = np.concatenate(
|
||||||
loser_offsets_boot)
|
# loser_offsets_boot)
|
||||||
loser_physicals_boot = np.concatenate(
|
# loser_physicals_boot = np.concatenate(
|
||||||
loser_physicals_boot)
|
# loser_physicals_boot)
|
||||||
|
|
||||||
percs = [5, 50, 95]
|
# percs = [5, 50, 95]
|
||||||
winner_onsets_boot_quarts = np.percentile(
|
# winner_onsets_boot_quarts = np.percentile(
|
||||||
winner_onsets_boot, percs, axis=0)
|
# winner_onsets_boot, percs, axis=0)
|
||||||
winner_offsets_boot_quarts = np.percentile(
|
# winner_offsets_boot_quarts = np.percentile(
|
||||||
winner_offsets_boot, percs, axis=0)
|
# winner_offsets_boot, percs, axis=0)
|
||||||
winner_physicals_boot_quarts = np.percentile(
|
# winner_physicals_boot_quarts = np.percentile(
|
||||||
winner_physicals_boot, percs, axis=0)
|
# winner_physicals_boot, percs, axis=0)
|
||||||
loser_onsets_boot_quarts = np.percentile(
|
# loser_onsets_boot_quarts = np.percentile(
|
||||||
loser_onsets_boot, percs, axis=0)
|
# loser_onsets_boot, percs, axis=0)
|
||||||
loser_offsets_boot_quarts = np.percentile(
|
# loser_offsets_boot_quarts = np.percentile(
|
||||||
loser_offsets_boot, percs, axis=0)
|
# loser_offsets_boot, percs, axis=0)
|
||||||
loser_physicals_boot_quarts = np.percentile(
|
# loser_physicals_boot_quarts = np.percentile(
|
||||||
loser_physicals_boot, percs, axis=0)
|
# loser_physicals_boot, percs, axis=0)
|
||||||
|
|
||||||
fig, ax = plt.subplots(2, 3, figsize=(
|
# fig, ax = plt.subplots(2, 3, figsize=(
|
||||||
21*ps.cm, 10*ps.cm), sharey=True, sharex=True)
|
# 21*ps.cm, 10*ps.cm), sharey=True, sharex=True)
|
||||||
|
|
||||||
ax[0, 0].plot(kde_time, winner_onsets_conv)
|
# ax[0, 0].plot(kde_time, winner_onsets_conv)
|
||||||
ax[0, 1].plot(kde_time, winner_offsets_conv)
|
# ax[0, 1].plot(kde_time, winner_offsets_conv)
|
||||||
ax[0, 2].plot(kde_time, winner_physicals_conv)
|
# ax[0, 2].plot(kde_time, winner_physicals_conv)
|
||||||
ax[1, 0].plot(kde_time, loser_onsets_conv)
|
# ax[1, 0].plot(kde_time, loser_onsets_conv)
|
||||||
ax[1, 1].plot(kde_time, loser_offsets_conv)
|
# ax[1, 1].plot(kde_time, loser_offsets_conv)
|
||||||
ax[1, 2].plot(kde_time, loser_physicals_conv)
|
# ax[1, 2].plot(kde_time, loser_physicals_conv)
|
||||||
|
|
||||||
ax[0, 0].plot(kde_time, winner_onsets_boot_quarts[1], c=ps.black)
|
# ax[0, 0].plot(kde_time, winner_onsets_boot_quarts[1], c=ps.black)
|
||||||
ax[0, 1].plot(kde_time, winner_offsets_boot_quarts[1], c=ps.black)
|
# ax[0, 1].plot(kde_time, winner_offsets_boot_quarts[1], c=ps.black)
|
||||||
ax[0, 2].plot(kde_time, winner_physicals_boot_quarts[1], c=ps.black)
|
# ax[0, 2].plot(kde_time, winner_physicals_boot_quarts[1], c=ps.black)
|
||||||
ax[1, 0].plot(kde_time, loser_onsets_boot_quarts[1], c=ps.black)
|
# ax[1, 0].plot(kde_time, loser_onsets_boot_quarts[1], c=ps.black)
|
||||||
ax[1, 1].plot(kde_time, loser_offsets_boot_quarts[1], c=ps.black)
|
# ax[1, 1].plot(kde_time, loser_offsets_boot_quarts[1], c=ps.black)
|
||||||
ax[1, 2].plot(kde_time, loser_physicals_boot_quarts[1], c=ps.black)
|
# ax[1, 2].plot(kde_time, loser_physicals_boot_quarts[1], c=ps.black)
|
||||||
|
|
||||||
# for kde in winner_onsets_boot:
|
# for kde in winner_onsets_boot:
|
||||||
# ax[0, 0].plot(kde_time, kde,
|
# ax[0, 0].plot(kde_time, kde,
|
||||||
@ -428,43 +483,43 @@ def main(dataroot):
|
|||||||
# ax[1, 2].plot(kde_time, kde,
|
# ax[1, 2].plot(kde_time, kde,
|
||||||
# color='gray')
|
# color='gray')
|
||||||
|
|
||||||
ax[0, 0].fill_between(kde_time,
|
# ax[0, 0].fill_between(kde_time,
|
||||||
winner_onsets_boot_quarts[0],
|
# winner_onsets_boot_quarts[0],
|
||||||
winner_onsets_boot_quarts[2],
|
# winner_onsets_boot_quarts[2],
|
||||||
color=ps.gray,
|
# color=ps.gray,
|
||||||
alpha=0.5)
|
# alpha=0.5)
|
||||||
|
|
||||||
ax[0, 1].fill_between(kde_time,
|
# ax[0, 1].fill_between(kde_time,
|
||||||
winner_offsets_boot_quarts[0],
|
# winner_offsets_boot_quarts[0],
|
||||||
winner_offsets_boot_quarts[2],
|
# winner_offsets_boot_quarts[2],
|
||||||
color=ps.gray,
|
# color=ps.gray,
|
||||||
alpha=0.5)
|
# alpha=0.5)
|
||||||
|
|
||||||
ax[0, 2].fill_between(kde_time,
|
# ax[0, 2].fill_between(kde_time,
|
||||||
loser_physicals_boot_quarts[0],
|
# loser_physicals_boot_quarts[0],
|
||||||
loser_physicals_boot_quarts[2],
|
# loser_physicals_boot_quarts[2],
|
||||||
color=ps.gray,
|
# color=ps.gray,
|
||||||
alpha=0.5)
|
# alpha=0.5)
|
||||||
|
|
||||||
ax[1, 0].fill_between(kde_time,
|
# ax[1, 0].fill_between(kde_time,
|
||||||
loser_onsets_boot_quarts[0],
|
# loser_onsets_boot_quarts[0],
|
||||||
loser_onsets_boot_quarts[2],
|
# loser_onsets_boot_quarts[2],
|
||||||
color=ps.gray,
|
# color=ps.gray,
|
||||||
alpha=0.5)
|
# alpha=0.5)
|
||||||
|
|
||||||
ax[1, 1].fill_between(kde_time,
|
# ax[1, 1].fill_between(kde_time,
|
||||||
loser_offsets_boot_quarts[0],
|
# loser_offsets_boot_quarts[0],
|
||||||
loser_offsets_boot_quarts[2],
|
# loser_offsets_boot_quarts[2],
|
||||||
color=ps.gray,
|
# color=ps.gray,
|
||||||
alpha=0.5)
|
# alpha=0.5)
|
||||||
|
|
||||||
ax[1, 2].fill_between(kde_time,
|
# ax[1, 2].fill_between(kde_time,
|
||||||
loser_physicals_boot_quarts[0],
|
# loser_physicals_boot_quarts[0],
|
||||||
loser_physicals_boot_quarts[2],
|
# loser_physicals_boot_quarts[2],
|
||||||
color=ps.gray,
|
# color=ps.gray,
|
||||||
alpha=0.5)
|
# alpha=0.5)
|
||||||
|
|
||||||
plt.show()
|
# plt.show()
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
Binary file not shown.
Loading…
Reference in New Issue
Block a user