saved chirps
This commit is contained in:
		
							parent
							
								
									844f65e24e
								
							
						
					
					
						commit
						ad888734dd
					
				| @ -527,6 +527,9 @@ def main(datapath: str) -> None: | |||||||
|                 if len(baseline_ts) == 0 or len(search_ts) == 0 or len(freq_ts) == 0: |                 if len(baseline_ts) == 0 or len(search_ts) == 0 or len(freq_ts) == 0: | ||||||
|                     continue |                     continue | ||||||
| 
 | 
 | ||||||
|  |                 #current_chirps = group_timestamps_v2( | ||||||
|  |                 #    [list(baseline_ts), list(search_ts), list(freq_ts)], 3) | ||||||
|  | 
 | ||||||
|                 |                 | ||||||
|                 # get index for each feature |                 # get index for each feature | ||||||
|                 baseline_idx = np.zeros_like(baseline_ts) |                 baseline_idx = np.zeros_like(baseline_ts) | ||||||
| @ -610,11 +613,16 @@ def main(datapath: str) -> None: | |||||||
|                 cm = index_vector[(sort_chirps_electrodes >= seoc) & ( |                 cm = index_vector[(sort_chirps_electrodes >= seoc) & ( | ||||||
|                     sort_chirps_electrodes <= seoc + config.chirp_window_threshold)] |                     sort_chirps_electrodes <= seoc + config.chirp_window_threshold)] | ||||||
| 
 | 
 | ||||||
|  |                  | ||||||
|  |                 chirps_unique = [] | ||||||
|                 for combination in combinations_best_elctrodes: |                 for combination in combinations_best_elctrodes: | ||||||
|                     if set(combination).issubset(sort_electrodes[cm]): |                     if set(combination).issubset(sort_electrodes[cm]): | ||||||
|                         the_real_chirps.append( |                         chirps_unique.append(np.mean(sort_chirps_electrodes[cm])) | ||||||
|                             np.mean(sort_chirps_electrodes[cm])) |  | ||||||
| 
 | 
 | ||||||
|  |                 the_real_chirps.append(np.mean(chirps_unique)) | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  |                 """ | ||||||
|                 if set([0,1]).issubset(sort_electrodes[cm]): |                 if set([0,1]).issubset(sort_electrodes[cm]): | ||||||
|                     the_real_chirps.append(np.mean(sort_chirps_electrodes[cm])) |                     the_real_chirps.append(np.mean(sort_chirps_electrodes[cm])) | ||||||
|                 elif set([1,0]).issubset(sort_electrodes[cm]): |                 elif set([1,0]).issubset(sort_electrodes[cm]): | ||||||
| @ -623,12 +631,14 @@ def main(datapath: str) -> None: | |||||||
|                     the_real_chirps.append(np.mean(sort_chirps_electrodes[cm])) |                     the_real_chirps.append(np.mean(sort_chirps_electrodes[cm])) | ||||||
|                 elif set([1,2]).issubset(sort_electrodes[cm]): |                 elif set([1,2]).issubset(sort_electrodes[cm]): | ||||||
|                     the_real_chirps.append(np.mean(sort_chirps_electrodes[cm])) |                     the_real_chirps.append(np.mean(sort_chirps_electrodes[cm])) | ||||||
| 
 |                 """ | ||||||
|                 bool_vector[cm] = False |                 bool_vector[cm] = False | ||||||
|  |             chirps.append(the_real_chirps) | ||||||
|             for ct in the_real_chirps: |             for ct in the_real_chirps: | ||||||
|                 axs[0, el].axvline(ct, color='b', lw=1) |                 axs[0, el].axvline(ct, color='b', lw=1) | ||||||
|     embed() |     embed() | ||||||
|             plt.show() | 
 | ||||||
|  | 
 | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| if __name__ == "__main__": | if __name__ == "__main__": | ||||||
|  | |||||||
| @ -82,7 +82,8 @@ def group_timestamps_v2(sublists: List[List[Union[int, float]]], n: int, time_th | |||||||
|     current_group = [] |     current_group = [] | ||||||
|     # Create a set to store the timestamps that occur in at least n of the sublists |     # Create a set to store the timestamps that occur in at least n of the sublists | ||||||
|     common_timestamps = set.intersection(*[set(lst) for lst in sublists]) |     common_timestamps = set.intersection(*[set(lst) for lst in sublists]) | ||||||
|     embed() |     # convert the set to a list | ||||||
|  |     common_timestamps = list(common_timestamps) | ||||||
|     # Iterate through the timestamps |     # Iterate through the timestamps | ||||||
|     for i in range(len(common_timestamps)): |     for i in range(len(common_timestamps)): | ||||||
|         # If the current timestamp is less than 50 milliseconds away from the previous timestamp |         # If the current timestamp is less than 50 milliseconds away from the previous timestamp | ||||||
|  | |||||||
		Loading…
	
		Reference in New Issue
	
	Block a user