saved chirps
This commit is contained in:
parent
844f65e24e
commit
ad888734dd
@ -527,6 +527,9 @@ def main(datapath: str) -> None:
|
|||||||
if len(baseline_ts) == 0 or len(search_ts) == 0 or len(freq_ts) == 0:
|
if len(baseline_ts) == 0 or len(search_ts) == 0 or len(freq_ts) == 0:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
|
#current_chirps = group_timestamps_v2(
|
||||||
|
# [list(baseline_ts), list(search_ts), list(freq_ts)], 3)
|
||||||
|
|
||||||
|
|
||||||
# get index for each feature
|
# get index for each feature
|
||||||
baseline_idx = np.zeros_like(baseline_ts)
|
baseline_idx = np.zeros_like(baseline_ts)
|
||||||
@ -610,11 +613,16 @@ def main(datapath: str) -> None:
|
|||||||
cm = index_vector[(sort_chirps_electrodes >= seoc) & (
|
cm = index_vector[(sort_chirps_electrodes >= seoc) & (
|
||||||
sort_chirps_electrodes <= seoc + config.chirp_window_threshold)]
|
sort_chirps_electrodes <= seoc + config.chirp_window_threshold)]
|
||||||
|
|
||||||
|
|
||||||
|
chirps_unique = []
|
||||||
for combination in combinations_best_elctrodes:
|
for combination in combinations_best_elctrodes:
|
||||||
if set(combination).issubset(sort_electrodes[cm]):
|
if set(combination).issubset(sort_electrodes[cm]):
|
||||||
the_real_chirps.append(
|
chirps_unique.append(np.mean(sort_chirps_electrodes[cm]))
|
||||||
np.mean(sort_chirps_electrodes[cm]))
|
|
||||||
|
the_real_chirps.append(np.mean(chirps_unique))
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
if set([0,1]).issubset(sort_electrodes[cm]):
|
if set([0,1]).issubset(sort_electrodes[cm]):
|
||||||
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
||||||
elif set([1,0]).issubset(sort_electrodes[cm]):
|
elif set([1,0]).issubset(sort_electrodes[cm]):
|
||||||
@ -623,12 +631,14 @@ def main(datapath: str) -> None:
|
|||||||
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
||||||
elif set([1,2]).issubset(sort_electrodes[cm]):
|
elif set([1,2]).issubset(sort_electrodes[cm]):
|
||||||
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
the_real_chirps.append(np.mean(sort_chirps_electrodes[cm]))
|
||||||
|
"""
|
||||||
bool_vector[cm] = False
|
bool_vector[cm] = False
|
||||||
|
chirps.append(the_real_chirps)
|
||||||
for ct in the_real_chirps:
|
for ct in the_real_chirps:
|
||||||
axs[0, el].axvline(ct, color='b', lw=1)
|
axs[0, el].axvline(ct, color='b', lw=1)
|
||||||
embed()
|
embed()
|
||||||
plt.show()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
@ -82,7 +82,8 @@ def group_timestamps_v2(sublists: List[List[Union[int, float]]], n: int, time_th
|
|||||||
current_group = []
|
current_group = []
|
||||||
# Create a set to store the timestamps that occur in at least n of the sublists
|
# Create a set to store the timestamps that occur in at least n of the sublists
|
||||||
common_timestamps = set.intersection(*[set(lst) for lst in sublists])
|
common_timestamps = set.intersection(*[set(lst) for lst in sublists])
|
||||||
embed()
|
# convert the set to a list
|
||||||
|
common_timestamps = list(common_timestamps)
|
||||||
# Iterate through the timestamps
|
# Iterate through the timestamps
|
||||||
for i in range(len(common_timestamps)):
|
for i in range(len(common_timestamps)):
|
||||||
# If the current timestamp is less than 50 milliseconds away from the previous timestamp
|
# If the current timestamp is less than 50 milliseconds away from the previous timestamp
|
||||||
|
Loading…
Reference in New Issue
Block a user