Fish loop needs debugging
This commit is contained in:
parent
7652663fb7
commit
a8171814dd
@ -6,6 +6,7 @@ import matplotlib.pyplot as plt
|
|||||||
from IPython import embed
|
from IPython import embed
|
||||||
from pandas import read_csv
|
from pandas import read_csv
|
||||||
from modules.logger import makeLogger
|
from modules.logger import makeLogger
|
||||||
|
from scipy.ndimage import gaussian_filter1d
|
||||||
|
|
||||||
logger = makeLogger(__name__)
|
logger = makeLogger(__name__)
|
||||||
|
|
||||||
@ -106,7 +107,6 @@ def correct_chasing_events(
|
|||||||
logger.info('Chasing events are equal')
|
logger.info('Chasing events are equal')
|
||||||
return category, timestamps
|
return category, timestamps
|
||||||
|
|
||||||
|
|
||||||
# Correct the wrong chasing events; delete double events
|
# Correct the wrong chasing events; delete double events
|
||||||
wrong_ids = []
|
wrong_ids = []
|
||||||
for i in range(len(longer_array)-(len_diff+1)):
|
for i in range(len(longer_array)-(len_diff+1)):
|
||||||
@ -123,6 +123,32 @@ def correct_chasing_events(
|
|||||||
return category, timestamps
|
return category, timestamps
|
||||||
|
|
||||||
|
|
||||||
|
def event_triggered_chirps(
|
||||||
|
event: np.ndarray,
|
||||||
|
chirps:np.ndarray,
|
||||||
|
time_before_event: int,
|
||||||
|
time_after_event: int
|
||||||
|
)-> tuple[np.ndarray, np.ndarray]:
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
event_chirps = [] # chirps that are in specified window around event
|
||||||
|
centered_chirps = [] # timestamps of chirps around event centered on the event timepoint
|
||||||
|
|
||||||
|
for event_timestamp in event:
|
||||||
|
start = event_timestamp - time_before_event # timepoint of window start
|
||||||
|
stop = event_timestamp + time_after_event # timepoint of window ending
|
||||||
|
chirps_around_event = [c for c in chirps if (c >= start) & (c <= stop)] # get chirps that are in a -5 to +5 sec window around event
|
||||||
|
event_chirps.append(chirps_around_event)
|
||||||
|
if len(chirps_around_event) == 0:
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
centered_chirps.append(chirps_around_event - event_timestamp)
|
||||||
|
centered_chirps = np.concatenate(centered_chirps, axis=0) # convert list of arrays to one array for plotting
|
||||||
|
|
||||||
|
return event_chirps, centered_chirps
|
||||||
|
|
||||||
|
|
||||||
def main(datapath: str):
|
def main(datapath: str):
|
||||||
|
|
||||||
# behavior is pandas dataframe with all the data
|
# behavior is pandas dataframe with all the data
|
||||||
@ -144,11 +170,6 @@ def main(datapath: str):
|
|||||||
chasing_offset = timestamps[category == 1]
|
chasing_offset = timestamps[category == 1]
|
||||||
physical_contact = timestamps[category == 2]
|
physical_contact = timestamps[category == 2]
|
||||||
|
|
||||||
##### TODO Physical contact-triggered chirps (PTC) mit Rasterplot #####
|
|
||||||
# Wahrscheinlichkeit von Phys auf Ch und vice versa
|
|
||||||
# Chasing-triggered chirps (CTC) mit Rasterplot
|
|
||||||
# Wahrscheinlichkeit von Chase auf Ch und vice versa
|
|
||||||
|
|
||||||
# First overview plot
|
# First overview plot
|
||||||
fig1, ax1 = plt.subplots()
|
fig1, ax1 = plt.subplots()
|
||||||
ax1.scatter(chirps, np.ones_like(chirps), marker='*', color='royalblue', label='Chirps')
|
ax1.scatter(chirps, np.ones_like(chirps), marker='*', color='royalblue', label='Chirps')
|
||||||
@ -160,11 +181,41 @@ def main(datapath: str):
|
|||||||
plt.close()
|
plt.close()
|
||||||
|
|
||||||
# Get fish ids
|
# Get fish ids
|
||||||
all_fish_ids = np.unique(chirps_fish_ids)
|
fish_ids = np.unique(chirps_fish_ids)
|
||||||
|
|
||||||
|
##### Chasing triggered chirps CTC #####
|
||||||
|
# Evaluate how many chirps were emitted in specific time window around the chasing onset events
|
||||||
|
|
||||||
|
# Iterate over chasing onsets (later over fish)
|
||||||
|
time_around_event = 5 # time window around the event in which chirps are counted, 5 = -5 to +5 sec around event
|
||||||
|
|
||||||
|
#### Loop crashes at concatenate in function ####
|
||||||
|
for i in range(len(fish_ids)):
|
||||||
|
fish = fish_ids[i]
|
||||||
|
chirps = chirps[chirps_fish_ids == fish]
|
||||||
|
print(fish)
|
||||||
|
|
||||||
|
chasing_chirps, centered_chasing_chirps = event_triggered_chirps(chasing_onset, chirps, time_around_event, time_around_event)
|
||||||
|
physical_chirps, centered_physical_chirps = event_triggered_chirps(physical_contact, chirps, time_around_event, time_around_event)
|
||||||
|
|
||||||
|
# Kernel density estimation ???
|
||||||
|
# centered_chasing_chirps_convolved = gaussian_filter1d(centered_chasing_chirps, 5)
|
||||||
|
|
||||||
|
# centered_chasing = chasing_onset[0] - chasing_onset[0] ## get the 0 timepoint for plotting; set one chasing event to 0
|
||||||
|
offsets = [0.5, 1]
|
||||||
|
fig4, ax4 = plt.subplots(figsize=(20 / 2.54, 12 / 2.54), constrained_layout=True)
|
||||||
|
ax4.eventplot(np.array([centered_chasing_chirps, centered_physical_chirps]), lineoffsets=offsets, linelengths=0.25, colors=['g', 'r'])
|
||||||
|
ax4.vlines(0, 0, 1.5, 'tab:grey', 'dashed', 'Timepoint of event')
|
||||||
|
# ax4.plot(centered_chasing_chirps_convolved)
|
||||||
|
ax4.set_yticks(offsets)
|
||||||
|
ax4.set_yticklabels(['Chasings', 'Physical \n contacts'])
|
||||||
|
ax4.set_xlabel('Time[s]')
|
||||||
|
ax4.set_ylabel('Type of event')
|
||||||
|
plt.show()
|
||||||
|
|
||||||
# Associate chirps to inidividual fish
|
# Associate chirps to inidividual fish
|
||||||
fish1 = chirps[chirps_fish_ids == all_fish_ids[0]]
|
fish1 = chirps[chirps_fish_ids == fish_ids[0]]
|
||||||
fish2 = chirps[chirps_fish_ids == all_fish_ids[1]]
|
fish2 = chirps[chirps_fish_ids == fish_ids[1]]
|
||||||
fish = [len(fish1), len(fish2)]
|
fish = [len(fish1), len(fish2)]
|
||||||
|
|
||||||
#### Chirp counts per fish general #####
|
#### Chirp counts per fish general #####
|
||||||
@ -196,36 +247,15 @@ def main(datapath: str):
|
|||||||
fig3 , ax3 = plt.subplots()
|
fig3 , ax3 = plt.subplots()
|
||||||
ax3.bar(['Chirps in chasing events', 'Chasing events without Chirps'], [counts_chirps_chasings, chasings_without_chirps], width=width)
|
ax3.bar(['Chirps in chasing events', 'Chasing events without Chirps'], [counts_chirps_chasings, chasings_without_chirps], width=width)
|
||||||
plt.ylabel('Count')
|
plt.ylabel('Count')
|
||||||
plt.show()
|
# plt.show()
|
||||||
plt.close()
|
plt.close()
|
||||||
|
|
||||||
# comparison between chasing events with and without chirps
|
# comparison between chasing events with and without chirps
|
||||||
|
|
||||||
##### Chasing triggered chirps CTC #####
|
|
||||||
# Evaluate how many chirps were emitted in specific time window around the chasing onset events
|
|
||||||
|
|
||||||
# Goal:
|
|
||||||
# Plot with Chasing onsets centered at t = 0 on x-axis as a function of event type (0, 1, 2) (or later as a function of recordings) with chirps as rasterplot in background
|
|
||||||
|
|
||||||
# Chasing onset is defined at the point event 'chasing'
|
|
||||||
# Iterate over chasing onsets (later over fish)
|
|
||||||
# Get chirps which in a time window of -5 to +5 seconds aroung the chasing onset and save them
|
|
||||||
# Set Chasing onset at timepoint 0: Chasing onset timestamp - chasing onset timestamp
|
|
||||||
# Calculate chirp timestamps relative to chasing onset: Chirp timestamp - Chasing onset timestamp
|
|
||||||
# For rasterplot look at plt.eventplot() function
|
|
||||||
# Do the plot
|
|
||||||
# Then same with physical onset events (PTC)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
embed()
|
embed()
|
||||||
|
exit()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user