Fish loop needs debugging
This commit is contained in:
		
							parent
							
								
									7652663fb7
								
							
						
					
					
						commit
						a8171814dd
					
				@ -6,6 +6,7 @@ import matplotlib.pyplot as plt
 | 
				
			|||||||
from IPython import embed
 | 
					from IPython import embed
 | 
				
			||||||
from pandas import read_csv
 | 
					from pandas import read_csv
 | 
				
			||||||
from modules.logger import makeLogger
 | 
					from modules.logger import makeLogger
 | 
				
			||||||
 | 
					from scipy.ndimage import gaussian_filter1d
 | 
				
			||||||
 | 
					
 | 
				
			||||||
logger = makeLogger(__name__)
 | 
					logger = makeLogger(__name__)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -106,7 +107,6 @@ def correct_chasing_events(
 | 
				
			|||||||
        logger.info('Chasing events are equal')
 | 
					        logger.info('Chasing events are equal')
 | 
				
			||||||
        return category, timestamps
 | 
					        return category, timestamps
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
    # Correct the wrong chasing events; delete double events
 | 
					    # Correct the wrong chasing events; delete double events
 | 
				
			||||||
    wrong_ids = []
 | 
					    wrong_ids = []
 | 
				
			||||||
    for i in range(len(longer_array)-(len_diff+1)):
 | 
					    for i in range(len(longer_array)-(len_diff+1)):
 | 
				
			||||||
@ -123,6 +123,32 @@ def correct_chasing_events(
 | 
				
			|||||||
    return category, timestamps
 | 
					    return category, timestamps
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def event_triggered_chirps(
 | 
				
			||||||
 | 
					    event: np.ndarray, 
 | 
				
			||||||
 | 
					    chirps:np.ndarray,
 | 
				
			||||||
 | 
					    time_before_event: int,
 | 
				
			||||||
 | 
					    time_after_event: int
 | 
				
			||||||
 | 
					    )-> tuple[np.ndarray, np.ndarray]:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    event_chirps = []   # chirps that are in specified window around event
 | 
				
			||||||
 | 
					    centered_chirps = []    # timestamps of chirps around event centered on the event timepoint
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for event_timestamp in event:
 | 
				
			||||||
 | 
					        start = event_timestamp - time_before_event    # timepoint of window start
 | 
				
			||||||
 | 
					        stop = event_timestamp + time_after_event    # timepoint of window ending
 | 
				
			||||||
 | 
					        chirps_around_event = [c for c in chirps if (c >= start) & (c <= stop)]     # get chirps that are in a -5 to +5 sec window around event
 | 
				
			||||||
 | 
					        event_chirps.append(chirps_around_event)
 | 
				
			||||||
 | 
					        if len(chirps_around_event) == 0:
 | 
				
			||||||
 | 
					            continue
 | 
				
			||||||
 | 
					        else: 
 | 
				
			||||||
 | 
					            centered_chirps.append(chirps_around_event - event_timestamp)
 | 
				
			||||||
 | 
					    centered_chirps = np.concatenate(centered_chirps, axis=0)   # convert list of arrays to one array for plotting
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return event_chirps, centered_chirps
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def main(datapath: str):
 | 
					def main(datapath: str):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # behavior is pandas dataframe with all the data
 | 
					    # behavior is pandas dataframe with all the data
 | 
				
			||||||
@ -144,11 +170,6 @@ def main(datapath: str):
 | 
				
			|||||||
    chasing_offset = timestamps[category == 1]
 | 
					    chasing_offset = timestamps[category == 1]
 | 
				
			||||||
    physical_contact = timestamps[category == 2]
 | 
					    physical_contact = timestamps[category == 2]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    ##### TODO Physical contact-triggered chirps (PTC) mit Rasterplot #####
 | 
					 | 
				
			||||||
    # Wahrscheinlichkeit von Phys auf Ch und vice versa
 | 
					 | 
				
			||||||
    # Chasing-triggered chirps (CTC) mit Rasterplot
 | 
					 | 
				
			||||||
    # Wahrscheinlichkeit von Chase auf Ch und vice versa
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    # First overview plot
 | 
					    # First overview plot
 | 
				
			||||||
    fig1, ax1 = plt.subplots()
 | 
					    fig1, ax1 = plt.subplots()
 | 
				
			||||||
    ax1.scatter(chirps, np.ones_like(chirps), marker='*', color='royalblue', label='Chirps')
 | 
					    ax1.scatter(chirps, np.ones_like(chirps), marker='*', color='royalblue', label='Chirps')
 | 
				
			||||||
@ -160,11 +181,41 @@ def main(datapath: str):
 | 
				
			|||||||
    plt.close()
 | 
					    plt.close()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # Get fish ids
 | 
					    # Get fish ids
 | 
				
			||||||
    all_fish_ids = np.unique(chirps_fish_ids)
 | 
					    fish_ids = np.unique(chirps_fish_ids)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    ##### Chasing triggered chirps CTC #####
 | 
				
			||||||
 | 
					    # Evaluate how many chirps were emitted in specific time window around the chasing onset events
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Iterate over chasing onsets (later over fish)
 | 
				
			||||||
 | 
					    time_around_event = 5    # time window around the event in which chirps are counted, 5 = -5 to +5 sec around event
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    #### Loop crashes at concatenate in function ####
 | 
				
			||||||
 | 
					    for i in range(len(fish_ids)):
 | 
				
			||||||
 | 
					        fish = fish_ids[i]
 | 
				
			||||||
 | 
					        chirps = chirps[chirps_fish_ids == fish]
 | 
				
			||||||
 | 
					        print(fish)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        chasing_chirps, centered_chasing_chirps = event_triggered_chirps(chasing_onset, chirps, time_around_event, time_around_event)
 | 
				
			||||||
 | 
					        physical_chirps, centered_physical_chirps = event_triggered_chirps(physical_contact, chirps, time_around_event, time_around_event)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # Kernel density estimation ???
 | 
				
			||||||
 | 
					        # centered_chasing_chirps_convolved = gaussian_filter1d(centered_chasing_chirps, 5)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # centered_chasing = chasing_onset[0] - chasing_onset[0]   ## get the 0 timepoint for plotting; set one chasing event to 0
 | 
				
			||||||
 | 
					        offsets = [0.5, 1]
 | 
				
			||||||
 | 
					        fig4, ax4 = plt.subplots(figsize=(20 / 2.54, 12 / 2.54), constrained_layout=True)
 | 
				
			||||||
 | 
					        ax4.eventplot(np.array([centered_chasing_chirps, centered_physical_chirps]), lineoffsets=offsets, linelengths=0.25, colors=['g', 'r'])
 | 
				
			||||||
 | 
					        ax4.vlines(0, 0, 1.5, 'tab:grey', 'dashed', 'Timepoint of event')
 | 
				
			||||||
 | 
					        # ax4.plot(centered_chasing_chirps_convolved)
 | 
				
			||||||
 | 
					        ax4.set_yticks(offsets)
 | 
				
			||||||
 | 
					        ax4.set_yticklabels(['Chasings', 'Physical \n contacts'])
 | 
				
			||||||
 | 
					        ax4.set_xlabel('Time[s]')
 | 
				
			||||||
 | 
					        ax4.set_ylabel('Type of event')
 | 
				
			||||||
 | 
					        plt.show()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # Associate chirps to inidividual fish
 | 
					    # Associate chirps to inidividual fish
 | 
				
			||||||
    fish1 = chirps[chirps_fish_ids == all_fish_ids[0]]
 | 
					    fish1 = chirps[chirps_fish_ids == fish_ids[0]]
 | 
				
			||||||
    fish2 = chirps[chirps_fish_ids == all_fish_ids[1]]
 | 
					    fish2 = chirps[chirps_fish_ids == fish_ids[1]]
 | 
				
			||||||
    fish = [len(fish1), len(fish2)]
 | 
					    fish = [len(fish1), len(fish2)]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    #### Chirp counts per fish general #####
 | 
					    #### Chirp counts per fish general #####
 | 
				
			||||||
@ -196,36 +247,15 @@ def main(datapath: str):
 | 
				
			|||||||
    fig3 , ax3 = plt.subplots()
 | 
					    fig3 , ax3 = plt.subplots()
 | 
				
			||||||
    ax3.bar(['Chirps in chasing events',  'Chasing events without Chirps'], [counts_chirps_chasings, chasings_without_chirps], width=width)
 | 
					    ax3.bar(['Chirps in chasing events',  'Chasing events without Chirps'], [counts_chirps_chasings, chasings_without_chirps], width=width)
 | 
				
			||||||
    plt.ylabel('Count')
 | 
					    plt.ylabel('Count')
 | 
				
			||||||
    plt.show()
 | 
					    # plt.show()
 | 
				
			||||||
    plt.close()  
 | 
					    plt.close()  
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # comparison between chasing events with and without chirps
 | 
					    # comparison between chasing events with and without chirps
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    ##### Chasing triggered chirps CTC #####
 | 
					 | 
				
			||||||
    # Evaluate how many chirps were emitted in specific time window around the chasing onset events
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    # Goal: 
 | 
					 | 
				
			||||||
    # Plot with Chasing onsets centered at t = 0 on x-axis as a function of event type (0, 1, 2) (or later as a function of recordings) with chirps as rasterplot in background
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    # Chasing onset is defined at the point event 'chasing'
 | 
					 | 
				
			||||||
    # Iterate over chasing onsets (later over fish)
 | 
					 | 
				
			||||||
    # Get chirps which in a time window of -5 to +5 seconds aroung the chasing onset and save them
 | 
					 | 
				
			||||||
    # Set Chasing onset at timepoint 0: Chasing onset timestamp - chasing onset timestamp
 | 
					 | 
				
			||||||
    # Calculate chirp timestamps relative to chasing onset: Chirp timestamp - Chasing onset timestamp
 | 
					 | 
				
			||||||
    # For rasterplot look at plt.eventplot() function
 | 
					 | 
				
			||||||
    # Do the plot
 | 
					 | 
				
			||||||
    # Then same with physical onset events (PTC)
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    embed()
 | 
					    embed()
 | 
				
			||||||
 | 
					    exit()
 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
		Loading…
	
		Reference in New Issue
	
	Block a user