Fish loop needs debugging

This commit is contained in:
sprause 2023-01-22 21:19:14 +01:00
parent 7652663fb7
commit a8171814dd

View File

@ -6,6 +6,7 @@ import matplotlib.pyplot as plt
from IPython import embed
from pandas import read_csv
from modules.logger import makeLogger
from scipy.ndimage import gaussian_filter1d
logger = makeLogger(__name__)
@ -106,7 +107,6 @@ def correct_chasing_events(
logger.info('Chasing events are equal')
return category, timestamps
# Correct the wrong chasing events; delete double events
wrong_ids = []
for i in range(len(longer_array)-(len_diff+1)):
@ -123,6 +123,32 @@ def correct_chasing_events(
return category, timestamps
def event_triggered_chirps(
event: np.ndarray,
chirps:np.ndarray,
time_before_event: int,
time_after_event: int
)-> tuple[np.ndarray, np.ndarray]:
event_chirps = [] # chirps that are in specified window around event
centered_chirps = [] # timestamps of chirps around event centered on the event timepoint
for event_timestamp in event:
start = event_timestamp - time_before_event # timepoint of window start
stop = event_timestamp + time_after_event # timepoint of window ending
chirps_around_event = [c for c in chirps if (c >= start) & (c <= stop)] # get chirps that are in a -5 to +5 sec window around event
event_chirps.append(chirps_around_event)
if len(chirps_around_event) == 0:
continue
else:
centered_chirps.append(chirps_around_event - event_timestamp)
centered_chirps = np.concatenate(centered_chirps, axis=0) # convert list of arrays to one array for plotting
return event_chirps, centered_chirps
def main(datapath: str):
# behavior is pandas dataframe with all the data
@ -144,11 +170,6 @@ def main(datapath: str):
chasing_offset = timestamps[category == 1]
physical_contact = timestamps[category == 2]
##### TODO Physical contact-triggered chirps (PTC) mit Rasterplot #####
# Wahrscheinlichkeit von Phys auf Ch und vice versa
# Chasing-triggered chirps (CTC) mit Rasterplot
# Wahrscheinlichkeit von Chase auf Ch und vice versa
# First overview plot
fig1, ax1 = plt.subplots()
ax1.scatter(chirps, np.ones_like(chirps), marker='*', color='royalblue', label='Chirps')
@ -160,11 +181,41 @@ def main(datapath: str):
plt.close()
# Get fish ids
all_fish_ids = np.unique(chirps_fish_ids)
fish_ids = np.unique(chirps_fish_ids)
##### Chasing triggered chirps CTC #####
# Evaluate how many chirps were emitted in specific time window around the chasing onset events
# Iterate over chasing onsets (later over fish)
time_around_event = 5 # time window around the event in which chirps are counted, 5 = -5 to +5 sec around event
#### Loop crashes at concatenate in function ####
for i in range(len(fish_ids)):
fish = fish_ids[i]
chirps = chirps[chirps_fish_ids == fish]
print(fish)
chasing_chirps, centered_chasing_chirps = event_triggered_chirps(chasing_onset, chirps, time_around_event, time_around_event)
physical_chirps, centered_physical_chirps = event_triggered_chirps(physical_contact, chirps, time_around_event, time_around_event)
# Kernel density estimation ???
# centered_chasing_chirps_convolved = gaussian_filter1d(centered_chasing_chirps, 5)
# centered_chasing = chasing_onset[0] - chasing_onset[0] ## get the 0 timepoint for plotting; set one chasing event to 0
offsets = [0.5, 1]
fig4, ax4 = plt.subplots(figsize=(20 / 2.54, 12 / 2.54), constrained_layout=True)
ax4.eventplot(np.array([centered_chasing_chirps, centered_physical_chirps]), lineoffsets=offsets, linelengths=0.25, colors=['g', 'r'])
ax4.vlines(0, 0, 1.5, 'tab:grey', 'dashed', 'Timepoint of event')
# ax4.plot(centered_chasing_chirps_convolved)
ax4.set_yticks(offsets)
ax4.set_yticklabels(['Chasings', 'Physical \n contacts'])
ax4.set_xlabel('Time[s]')
ax4.set_ylabel('Type of event')
plt.show()
# Associate chirps to inidividual fish
fish1 = chirps[chirps_fish_ids == all_fish_ids[0]]
fish2 = chirps[chirps_fish_ids == all_fish_ids[1]]
fish1 = chirps[chirps_fish_ids == fish_ids[0]]
fish2 = chirps[chirps_fish_ids == fish_ids[1]]
fish = [len(fish1), len(fish2)]
#### Chirp counts per fish general #####
@ -196,36 +247,15 @@ def main(datapath: str):
fig3 , ax3 = plt.subplots()
ax3.bar(['Chirps in chasing events', 'Chasing events without Chirps'], [counts_chirps_chasings, chasings_without_chirps], width=width)
plt.ylabel('Count')
plt.show()
# plt.show()
plt.close()
# comparison between chasing events with and without chirps
##### Chasing triggered chirps CTC #####
# Evaluate how many chirps were emitted in specific time window around the chasing onset events
# Goal:
# Plot with Chasing onsets centered at t = 0 on x-axis as a function of event type (0, 1, 2) (or later as a function of recordings) with chirps as rasterplot in background
# Chasing onset is defined at the point event 'chasing'
# Iterate over chasing onsets (later over fish)
# Get chirps which in a time window of -5 to +5 seconds aroung the chasing onset and save them
# Set Chasing onset at timepoint 0: Chasing onset timestamp - chasing onset timestamp
# Calculate chirp timestamps relative to chasing onset: Chirp timestamp - Chasing onset timestamp
# For rasterplot look at plt.eventplot() function
# Do the plot
# Then same with physical onset events (PTC)
embed()
exit()