sorted plots
This commit is contained in:
parent
41ffe7ecce
commit
96933c0532
@ -180,8 +180,21 @@ def main(datapath: str) -> None:
|
|||||||
|
|
||||||
# set time window # <------------------------ Iterate through windows here
|
# set time window # <------------------------ Iterate through windows here
|
||||||
window_duration = 5 * data.samplerate # 5 seconds window
|
window_duration = 5 * data.samplerate # 5 seconds window
|
||||||
window_overlap = 0.5 * data.samplerate # 30 seconds overlap
|
window_overlap = 0.5 * data.samplerate # 0.5 seconds overlap
|
||||||
raw_time = np.arange(data.shape[0])
|
|
||||||
|
# check if window duration is even
|
||||||
|
if window_duration % 2 == 0:
|
||||||
|
window_duration = int(window_duration)
|
||||||
|
else:
|
||||||
|
raise ValueError("Window duration must be even.")
|
||||||
|
|
||||||
|
# check if window ovelap is even
|
||||||
|
if window_overlap % 2 == 0:
|
||||||
|
window_overlap = int(window_overlap)
|
||||||
|
else:
|
||||||
|
raise ValueError("Window overlap must be even.")
|
||||||
|
|
||||||
|
raw_time = np.arange(data.shape[0]) / data.samplerate
|
||||||
t0 = (3 * 60 * 60 + 6 * 60 + 43.5) * data.samplerate
|
t0 = (3 * 60 * 60 + 6 * 60 + 43.5) * data.samplerate
|
||||||
dt = 60 * data.samplerate
|
dt = 60 * data.samplerate
|
||||||
|
|
||||||
@ -202,9 +215,6 @@ def main(datapath: str) -> None:
|
|||||||
# start_index = t0 * data.samplerate
|
# start_index = t0 * data.samplerate
|
||||||
# stop_index = (t0 + dt) * data.samplerate
|
# stop_index = (t0 + dt) * data.samplerate
|
||||||
|
|
||||||
# load region of interest of raw data file
|
|
||||||
data_oi = data[start_index:stop_index, :]
|
|
||||||
|
|
||||||
fig, axs = plt.subplots(
|
fig, axs = plt.subplots(
|
||||||
7,
|
7,
|
||||||
2,
|
2,
|
||||||
@ -217,6 +227,10 @@ def main(datapath: str) -> None:
|
|||||||
# iterate through all fish
|
# iterate through all fish
|
||||||
for i, track_id in enumerate(np.unique(ident[~np.isnan(ident)])[:2]):
|
for i, track_id in enumerate(np.unique(ident[~np.isnan(ident)])[:2]):
|
||||||
|
|
||||||
|
# load region of interest of raw data file
|
||||||
|
data_oi = data[start_index:stop_index, :]
|
||||||
|
time_oi = raw_time[start_index:stop_index]
|
||||||
|
|
||||||
# get indices for time array in time window
|
# get indices for time array in time window
|
||||||
window_index = np.arange(len(idx))[
|
window_index = np.arange(len(idx))[
|
||||||
(ident == track_id) & (time[idx] >= t0) & (
|
(ident == track_id) & (time[idx] >= t0) & (
|
||||||
@ -226,7 +240,7 @@ def main(datapath: str) -> None:
|
|||||||
# get tracked frequencies and their times
|
# get tracked frequencies and their times
|
||||||
freq_temp = freq[window_index]
|
freq_temp = freq[window_index]
|
||||||
powers_temp = powers[window_index, :]
|
powers_temp = powers[window_index, :]
|
||||||
# time_temp = time[idx[window_index]]
|
time_temp = time[idx[window_index]]
|
||||||
track_samplerate = np.mean(1 / np.diff(time))
|
track_samplerate = np.mean(1 / np.diff(time))
|
||||||
expected_duration = ((t0 + dt) - t0) * track_samplerate
|
expected_duration = ((t0 + dt) - t0) * track_samplerate
|
||||||
|
|
||||||
@ -236,13 +250,9 @@ def main(datapath: str) -> None:
|
|||||||
|
|
||||||
# get best electrode
|
# get best electrode
|
||||||
electrode = np.argsort(np.nanmean(powers_temp, axis=0))[-1]
|
electrode = np.argsort(np.nanmean(powers_temp, axis=0))[-1]
|
||||||
# electrode = best_electrodes[0]
|
|
||||||
|
|
||||||
# <------------------------------------------ Iterate through electrodes
|
# <------------------------------------------ Iterate through electrodes
|
||||||
|
|
||||||
# plot spectrogram
|
|
||||||
plot_spectrogram(axs[0, i], data_oi[:, electrode], data.samplerate)
|
|
||||||
|
|
||||||
# plot wavetracker tracks to spectrogram
|
# plot wavetracker tracks to spectrogram
|
||||||
# for track_id in np.unique(ident): # <---------- Find freq gaps later
|
# for track_id in np.unique(ident): # <---------- Find freq gaps later
|
||||||
# here
|
# here
|
||||||
@ -263,62 +273,43 @@ def main(datapath: str) -> None:
|
|||||||
# track_id = ids
|
# track_id = ids
|
||||||
|
|
||||||
# frequency where second filter filters
|
# frequency where second filter filters
|
||||||
search_freq = -50
|
search_freq = 50
|
||||||
|
|
||||||
# filter baseline and above
|
# filter baseline and above
|
||||||
baseline, search = double_bandpass(
|
baseline, search = double_bandpass(
|
||||||
data_oi[:, electrode], data.samplerate, freq_temp, search_freq
|
data_oi[:, electrode], data.samplerate, freq_temp, search_freq
|
||||||
)
|
)
|
||||||
|
|
||||||
# plot waveform of filtered signal
|
# compute instantaneous frequency on broad signal
|
||||||
axs[2, i].plot(np.arange(len(baseline)) /
|
broad_baseline = bandpass_filter(
|
||||||
data.samplerate, baseline, c="k")
|
data_oi[:, electrode],
|
||||||
|
data.samplerate,
|
||||||
# plot instatneous frequency
|
lowf=np.mean(freq_temp)-5,
|
||||||
broad_baseline = bandpass_filter(data_oi[:, electrode], data.samplerate, lowf=np.mean(
|
highf=np.mean(freq_temp)+100
|
||||||
freq_temp)-5, highf=np.mean(freq_temp)+100)
|
)
|
||||||
|
# compute instantaneous frequency on narrow signal
|
||||||
baseline_freq_time, baseline_freq = instantaneos_frequency(
|
baseline_freq_time, baseline_freq = instantaneos_frequency(
|
||||||
baseline, data.samplerate
|
baseline, data.samplerate
|
||||||
)
|
)
|
||||||
axs[1, i].plot(baseline_freq_time, baseline_freq -
|
|
||||||
np.median(baseline_freq), marker=".")
|
|
||||||
|
|
||||||
# plot waveform of filtered search signal
|
|
||||||
axs[3, i].plot(np.arange(len(baseline)) / data.samplerate, search)
|
|
||||||
|
|
||||||
# compute envelopes
|
# compute envelopes
|
||||||
cutoff = 25
|
cutoff = 25
|
||||||
baseline_envelope = envelope(baseline, data.samplerate, cutoff)
|
baseline_envelope = envelope(baseline, data.samplerate, cutoff)
|
||||||
axs[2, i].plot(
|
|
||||||
np.arange(len(baseline)) / data.samplerate,
|
|
||||||
baseline_envelope,
|
|
||||||
c="orange",
|
|
||||||
)
|
|
||||||
axs[2, i].plot(
|
|
||||||
np.arange(len(baseline)) / data.samplerate,
|
|
||||||
broad_baseline,
|
|
||||||
c="green",
|
|
||||||
)
|
|
||||||
search_envelope = envelope(search, data.samplerate, cutoff)
|
search_envelope = envelope(search, data.samplerate, cutoff)
|
||||||
axs[3, i].plot(
|
|
||||||
np.arange(len(baseline)) / data.samplerate,
|
|
||||||
search_envelope,
|
|
||||||
c="orange",
|
|
||||||
)
|
|
||||||
|
|
||||||
# highpass filter envelopes
|
# highpass filter envelopes
|
||||||
cutoff = 5
|
cutoff = 5
|
||||||
baseline_envelope = highpass_filter(
|
baseline_envelope = highpass_filter(
|
||||||
baseline_envelope, data.samplerate, cutoff=cutoff
|
baseline_envelope, data.samplerate, cutoff=cutoff
|
||||||
)
|
)
|
||||||
|
baseline_envelope = np.abs(baseline_envelope)
|
||||||
# search_envelope = highpass_filter(
|
# search_envelope = highpass_filter(
|
||||||
# search_envelope, data.samplerate, cutoff=cutoff)
|
# search_envelope, data.samplerate, cutoff=cutoff)
|
||||||
|
|
||||||
# envelopes of filtered envelope of filtered baseline
|
# envelopes of filtered envelope of filtered baseline
|
||||||
baseline_envelope = envelope(
|
# baseline_envelope = envelope(
|
||||||
np.abs(baseline_envelope), data.samplerate, cutoff
|
# np.abs(baseline_envelope), data.samplerate, cutoff
|
||||||
)
|
# )
|
||||||
|
|
||||||
# search_envelope = bandpass_filter(
|
# search_envelope = bandpass_filter(
|
||||||
# search_envelope, data.samplerate, lowf=lowf, highf=highf)
|
# search_envelope, data.samplerate, lowf=lowf, highf=highf)
|
||||||
@ -328,43 +319,99 @@ def main(datapath: str) -> None:
|
|||||||
baseline_freq, data.samplerate, lowf=15, highf=8000
|
baseline_freq, data.samplerate, lowf=15, highf=8000
|
||||||
)
|
)
|
||||||
|
|
||||||
# plot filtered and rectified envelope
|
# cut off first and last 0.5 * overlap at start and end
|
||||||
axs[4, i].plot(
|
valid = np.arange(
|
||||||
np.arange(len(baseline)) / data.samplerate, baseline_envelope
|
int(0.5 * window_overlap), len(baseline_envelope) -
|
||||||
|
int(0.5 * window_overlap)
|
||||||
)
|
)
|
||||||
|
baseline_envelope = baseline_envelope[valid]
|
||||||
|
search_envelope = search_envelope[valid]
|
||||||
|
|
||||||
axs[5, i].plot(np.arange(len(baseline)) /
|
# get inst freq valid snippet
|
||||||
data.samplerate, search_envelope)
|
valid_t0 = int(0.5 * window_overlap)
|
||||||
|
valid_t1 = len(baseline_envelope) - int(0.5 * window_overlap)
|
||||||
|
inst_freq_filtered = inst_freq_filtered[(baseline_freq_time >= valid_t0) & (
|
||||||
|
baseline_freq_time <= valid_t1)]
|
||||||
|
baseline_freq_time = baseline_freq_time[(baseline_freq_time >= valid_t0) & (
|
||||||
|
baseline_freq_time <= valid_t1)]
|
||||||
|
|
||||||
axs[6, i].plot(baseline_freq_time, np.abs(inst_freq_filtered))
|
# overwrite raw time to valid region
|
||||||
|
time_oi = time_oi[valid]
|
||||||
|
|
||||||
# detect peaks baseline_enelope
|
# detect peaks baseline_enelope
|
||||||
prominence = iqr(baseline_envelope)
|
prominence = np.percentile(baseline_envelope, 90)
|
||||||
baseline_peaks, _ = find_peaks(
|
baseline_peaks, _ = find_peaks(
|
||||||
baseline_envelope, prominence=prominence)
|
np.abs(baseline_envelope), prominence=prominence)
|
||||||
axs[4, i].scatter(
|
axs[4, i].scatter(
|
||||||
(np.arange(len(baseline)) / data.samplerate)[baseline_peaks],
|
(time_oi)[baseline_peaks],
|
||||||
baseline_envelope[baseline_peaks],
|
baseline_envelope[baseline_peaks],
|
||||||
c="red",
|
c="red",
|
||||||
)
|
)
|
||||||
|
|
||||||
# detect peaks search_envelope
|
# detect peaks search_envelope
|
||||||
search_peaks, _ = find_peaks(search_envelope, height=0.0001)
|
prominence = np.percentile(search_envelope, 75)
|
||||||
|
search_peaks, _ = find_peaks(
|
||||||
|
search_envelope, prominence=prominence)
|
||||||
axs[5, i].scatter(
|
axs[5, i].scatter(
|
||||||
(np.arange(len(baseline)) / data.samplerate)[search_peaks],
|
(time_oi)[search_peaks],
|
||||||
search_envelope[search_peaks],
|
search_envelope[search_peaks],
|
||||||
c="red",
|
c="red",
|
||||||
)
|
)
|
||||||
|
|
||||||
# detect peaks inst_freq_filtered
|
# detect peaks inst_freq_filtered
|
||||||
|
prominence = 2
|
||||||
inst_freq_peaks, _ = find_peaks(
|
inst_freq_peaks, _ = find_peaks(
|
||||||
np.abs(inst_freq_filtered), height=2)
|
np.abs(inst_freq_filtered), prominence=prominence)
|
||||||
axs[6, i].scatter(
|
axs[6, i].scatter(
|
||||||
baseline_freq_time[inst_freq_peaks],
|
baseline_freq_time[inst_freq_peaks],
|
||||||
np.abs(inst_freq_filtered)[inst_freq_peaks],
|
np.abs(inst_freq_filtered)[inst_freq_peaks],
|
||||||
c="red",
|
c="red",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# plot spectrogram
|
||||||
|
plot_spectrogram(axs[0, i], data_oi[:, electrode], data.samplerate)
|
||||||
|
|
||||||
|
# plot baseline instantaneos frequency
|
||||||
|
axs[1, i].plot(baseline_freq_time, baseline_freq -
|
||||||
|
np.median(baseline_freq), marker=".")
|
||||||
|
|
||||||
|
# plot waveform of filtered signal
|
||||||
|
axs[2, i].plot(time_oi, baseline, c="k")
|
||||||
|
|
||||||
|
# plot waveform of filtered search signal
|
||||||
|
axs[3, i].plot(time_oi, search)
|
||||||
|
|
||||||
|
# plot narrow filtered baseline
|
||||||
|
axs[2, i].plot(
|
||||||
|
time_oi,
|
||||||
|
baseline_envelope,
|
||||||
|
c="orange",
|
||||||
|
)
|
||||||
|
|
||||||
|
# plot broad filtered baseline
|
||||||
|
axs[2, i].plot(
|
||||||
|
time_oi,
|
||||||
|
broad_baseline,
|
||||||
|
c="green",
|
||||||
|
)
|
||||||
|
|
||||||
|
# plot envelope of search signal
|
||||||
|
axs[3, i].plot(
|
||||||
|
time_oi,
|
||||||
|
search_envelope,
|
||||||
|
c="orange",
|
||||||
|
)
|
||||||
|
|
||||||
|
# plot filtered and rectified envelope
|
||||||
|
axs[4, i].plot(
|
||||||
|
time_oi, baseline_envelope
|
||||||
|
)
|
||||||
|
|
||||||
|
# plot envelope of search signal
|
||||||
|
axs[5, i].plot(time_oi, search_envelope)
|
||||||
|
|
||||||
|
# plot filtered instantaneous frequency
|
||||||
|
axs[6, i].plot(baseline_freq_time, np.abs(inst_freq_filtered))
|
||||||
axs[0, i].set_title("Spectrogram")
|
axs[0, i].set_title("Spectrogram")
|
||||||
axs[1, i].set_title("Fitered baseline instanenous frequency")
|
axs[1, i].set_title("Fitered baseline instanenous frequency")
|
||||||
axs[2, i].set_title("Fitered baseline")
|
axs[2, i].set_title("Fitered baseline")
|
||||||
|
Loading…
Reference in New Issue
Block a user